BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 11551515)

  • 21. Protection of rat hepatocytes from tert-butyl hydroperoxide-induced injury by catechol.
    Rush GF; Yodis LA; Alberts D
    Toxicol Appl Pharmacol; 1986 Jul; 84(3):607-16. PubMed ID: 3726880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An aqueous extract of Rubus chingii fruits protects primary rat hepatocytes against tert-butyl hydroperoxide induced oxidative stress.
    Yau MH; Che CT; Liang SM; Kong YC; Fong WP
    Life Sci; 2002 Dec; 72(3):329-38. PubMed ID: 12427491
    [TBL] [Abstract][Full Text] [Related]  

  • 23. tert-butyl hydroperoxide kills cultured hepatocytes by peroxidizing membrane lipids.
    Masaki N; Kyle ME; Farber JL
    Arch Biochem Biophys; 1989 Mar; 269(2):390-9. PubMed ID: 2919876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationship of the metabolism of vitamins C and E in cultured hepatocytes treated with tert-butyl hydroperoxide.
    Glascott PA; Gilfor E; Farber JL
    Mol Pharmacol; 1995 Jul; 48(1):80-8. PubMed ID: 7623778
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arachidonic acid release in renal proximal tubule cell injuries and death.
    Schnellmann RG; Yang X; Carrick JB
    J Biochem Toxicol; 1994 Aug; 9(4):211-7. PubMed ID: 7853355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes.
    Huang CS; Lii CK; Lin AH; Yeh YW; Yao HT; Li CC; Wang TS; Chen HW
    Arch Toxicol; 2013 Jan; 87(1):167-78. PubMed ID: 22864849
    [TBL] [Abstract][Full Text] [Related]  

  • 27. K(+)-linked release of oxidized glutathione induced by tert-butyl hydroperoxide in perfused rat liver is independent of lipid peroxidation and cell death.
    Ozaki M; Aoki S; Masuda Y
    Jpn J Pharmacol; 1994 Jul; 65(3):183-91. PubMed ID: 7799518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inactivation of endoplasmic reticulum bound Ca2+-independent phospholipase A2 in renal cells during oxidative stress.
    Cummings BS; Gelasco AK; Kinsey GR; McHowat J; Schnellmann RG
    J Am Soc Nephrol; 2004 Jun; 15(6):1441-51. PubMed ID: 15153555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A search for cellular and molecular mechanisms involved in depleted uranium (DU) toxicity.
    Pourahmad J; Ghashang M; Ettehadi HA; Ghalandari R
    Environ Toxicol; 2006 Aug; 21(4):349-54. PubMed ID: 16841314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of sulfite cytotoxicity in isolated rat hepatocytes.
    Niknahad H; O'Brien PJ
    Chem Biol Interact; 2008 Aug; 174(3):147-54. PubMed ID: 18579106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arachidonic acid converts the glutathione depletion-induced apoptosis to necrosis by promoting lipid peroxidation and reducing caspase-3 activity in rat glioma cells.
    Higuchi Y; Yoshimoto T
    Arch Biochem Biophys; 2002 Apr; 400(1):133-40. PubMed ID: 11913980
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of vitamin E on the killing of cultured hepatocytes by tert-butyl hydroperoxide.
    Glascott PA; Gilfor E; Farber JL
    Mol Pharmacol; 1992 Jun; 41(6):1155-62. PubMed ID: 1614414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HTHQ (1-O-hexyl-2,3,5-trimethylhydroquinone), an anti-lipid-peroxidative compound: its chemical and biochemical characterizations.
    Hino T; Kawanishi S; Yasui H; Oka S; Sakurai H
    Biochim Biophys Acta; 1998 Sep; 1425(1):47-60. PubMed ID: 9813237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of t-butyl hydroperoxide-induced toxicity to rabbit renal proximal tubules.
    Schnellmann RG
    Am J Physiol; 1988 Jul; 255(1 Pt 1):C28-33. PubMed ID: 3389399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microcystin-LR and nodularin induce intracellular glutathione alteration, reactive oxygen species production and lipid peroxidation in primary cultured rat hepatocytes.
    Bouaïcha N; Maatouk I
    Toxicol Lett; 2004 Mar; 148(1-2):53-63. PubMed ID: 15019088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Ca²⁺-calmodulin-Ca²⁺/calmodulin-dependent protein kinase II signaling pathway is involved in oxidative stress-induced mitochondrial permeability transition and apoptosis in isolated rat hepatocytes.
    Toledo FD; Pérez LM; Basiglio CL; Ochoa JE; Sanchez Pozzi EJ; Roma MG
    Arch Toxicol; 2014 Sep; 88(9):1695-709. PubMed ID: 24614978
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidative damage of rat liver mitochondria during exposure to t-butyl hydroperoxide. Role of Ca²⁺ ions in oxidative processes.
    Zavodnik IB; Dremza IK; Cheshchevik VT; Lapshina EA; Zamaraewa M
    Life Sci; 2013 Jun; 92(23):1110-7. PubMed ID: 23643634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dihydroisotanshinone I protects against menadione-induced toxicity in a primary culture of rat hepatocytes.
    Ip SP; Yang H; Sun HD; Che CT
    Planta Med; 2002 Dec; 68(12):1077-81. PubMed ID: 12494333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A tocotrienol-rich fraction from grape seeds inhibits oxidative stress induced by tert-butyl hydroperoxide in HepG2 cells.
    Choi Y; Lee SM; Kim Y; Yoon J; Jeong HS; Lee J
    J Med Food; 2010 Oct; 13(5):1240-6. PubMed ID: 20726785
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibitory effect of berberine on tert-butyl hydroperoxide-induced oxidative damage in rat liver.
    Hwang JM; Wang CJ; Chou FP; Tseng TH; Hsieh YS; Lin WL; Chu CY
    Arch Toxicol; 2002 Nov; 76(11):664-70. PubMed ID: 12415430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.