BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 1155163)

  • 1. Frequency dependent changes in the amplitude of the cochlear microphonic potential of the pigeon ear during transient anoxia.
    Jorgensen F
    Acta Physiol Scand; 1975 May; 94(1):14-28. PubMed ID: 1155163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cochlear potentials of the pigeon inner ear recorded with microelectrodes.
    Jorgensen FO
    Acta Physiol Scand; 1977 Aug; 100(4):393-403. PubMed ID: 906847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The changes in the summating potential and morphology in the cochlea of guinea pigs with anoxia].
    Li X; Sun J; Sun W
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1994; 29(2):74-7. PubMed ID: 7803093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig.
    Salt AN; Lichtenhan JT; Gill RM; Hartsock JJ
    J Acoust Soc Am; 2013 Mar; 133(3):1561-71. PubMed ID: 23464026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Changes of cochlear electrical activities in early experimental hydrolabyrinth].
    Wu DZ
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1993; 28(1):8-10, 58. PubMed ID: 8352999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cochlear potentials and oxygen associated with hypoxia.
    Lawrence M; Nuttali AL; Burgio PA
    Ann Otol Rhinol Laryngol; 1975; 84(4 Pt 1):499-512. PubMed ID: 1155885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Morphological and cochlear microphonic potential changes caused by excessive sonic stimulation in animals with experimental endolymphatic hydrops].
    Yanagi Y; Nakamura S; Murakami Y; Shida T; Sugano T
    Nihon Jibiinkoka Gakkai Kaiho; 1972 Oct; 75(10):1024-5. PubMed ID: 4676069
    [No Abstract]   [Full Text] [Related]  

  • 9. The effect of transient anoxia upon the cochlear potentials.
    Kusakari J; Kambayashi J; Kobayashi T; Rokugo M; Arakawa E; Ohyama K; Kaneko Y
    Auris Nasus Larynx; 1981; 8(2):55-64. PubMed ID: 7337589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using a concha electrode to measure response patterns based on the amplitudes of cochlear microphonic waveforms across acoustic frequencies in normal-hearing subjects.
    Zhang M
    Ear Hear; 2015 Jan; 36(1):53-60. PubMed ID: 25083598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vestibular microphonic potentials in pigeons.
    Wit HP; Kahmann HF; Segenhout JM
    Arch Otorhinolaryngol; 1986; 243(2):146-50. PubMed ID: 3487306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal pattern of basilar membrane vibration in the sensitive cochlea.
    Ren T
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):17101-6. PubMed ID: 12461165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The influence of endolymphatic sac surgery on cochlear function and structure in guinea pigs].
    Xu Z
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1990; 25(6):338-41, 382-3. PubMed ID: 2093344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A physiological frequency-position map of the chinchilla cochlea.
    Müller M; Hoidis S; Smolders JW
    Hear Res; 2010 Sep; 268(1-2):184-93. PubMed ID: 20685384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rupture of Reissner's membrane during acute endolymphatic hydrops in the guinea pig: a model for Ménière's disease?
    Valk WL; Wit HP; Albers FW
    Acta Otolaryngol; 2006 Oct; 126(10):1030-5. PubMed ID: 16923705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the intensity of masking noise on ear canal recorded low-frequency cochlear microphonic waveforms in normal hearing subjects.
    Zhang M
    Hear Res; 2014 Jul; 313():9-17. PubMed ID: 24793117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of mannitol upon cochlear dysfunction induced by transient local anoxia.
    Tabuchi K; Ito Z; Wada T; Hara A; Kusakari J
    Hear Res; 1998 Dec; 126(1-2):28-36. PubMed ID: 9872131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Third-window vibroplasty with an active middle ear implant: assessment of physiologic responses in a model of stapes fixation in Chinchilla lanigera.
    Lupo JE; Koka K; Jenkins HA; Tollin DJ
    Otol Neurotol; 2012 Apr; 33(3):425-31. PubMed ID: 22334156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological assessment of active middle ear implant coupling to the round window in Chinchilla lanigera.
    Lupo JE; Koka K; Hyde BJ; Jenkins HA; Tollin DJ
    Otolaryngol Head Neck Surg; 2011 Oct; 145(4):641-7. PubMed ID: 21593462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postnatal development of cochlear function in the mustached bat, Pteronotus parnellii.
    Kössl M; Foeller E; Drexl M; Vater M; Mora E; Coro F; Russell IJ
    J Neurophysiol; 2003 Oct; 90(4):2261-73. PubMed ID: 14534266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.