These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11551817)

  • 41. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.
    Asgharpour Z; Zioupos P; Graw M; Peldschus S
    Forensic Sci Int; 2014 Mar; 236():109-16. PubMed ID: 24529781
    [TBL] [Abstract][Full Text] [Related]  

  • 42. How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements.
    Grassi L; Väänänen SP; Ristinmaa M; Jurvelin JS; Isaksson H
    J Biomech; 2016 Mar; 49(5):802-806. PubMed ID: 26944687
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A simple measuring device for laboratory indentation tests on cartilage.
    Koeller W; Kunow J; Ostermeyer O; Stomberg P; Boos C; Russlies M
    Biomed Tech (Berl); 2008 Apr; 53(2):59-64. PubMed ID: 18979621
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The cancellous bone multiscale morphology-elasticity relationship.
    Agić A; Nikolić V; Mijović B
    Coll Antropol; 2006 Jun; 30(2):409-14. PubMed ID: 16848160
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level.
    Rieger R; Auregan JC; Hoc T
    Morphologie; 2018 Mar; 102(336):12-20. PubMed ID: 28893491
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Minimizing specimen length in elastic testing of end-constrained cancellous bone.
    Lievers WB; Waldman SD; Pilkey AK
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):22-30. PubMed ID: 19878899
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NACOB presentation to ASB Young Scientist Award: Postdoctoral. The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling. North American Congress on Biomechanics.
    Jacobs CR; Davis BR; Rieger CJ; Francis JJ; Saad M; Fyhrie DP
    J Biomech; 1999 Nov; 32(11):1159-64. PubMed ID: 10541065
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical properties of femoral trabecular bone in dogs.
    Pressel T; Bouguecha A; Vogt U; Meyer-Lindenberg A; Behrens BA; Nolte I; Windhagen H
    Biomed Eng Online; 2005 Mar; 4():17. PubMed ID: 15774014
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanical behavior of human morselized cancellous bone in triaxial compression testing.
    Brodt MD; Swan CC; Brown TD
    J Orthop Res; 1998 Jan; 16(1):43-9. PubMed ID: 9565072
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elastic properties of cancellous bone derived from finite element models of parameterized microstructure cells.
    Kowalczyk P
    J Biomech; 2003 Jul; 36(7):961-72. PubMed ID: 12757805
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Compressive properties of trabecular bone in the distal femur.
    Burgers TA; Mason J; Niebur G; Ploeg HL
    J Biomech; 2008; 41(5):1077-85. PubMed ID: 18206893
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of microcomputed tomography voxel size on the finite element model accuracy for human cancellous bone.
    Yeni YN; Christopherson GT; Dong XN; Kim DG; Fyhrie DP
    J Biomech Eng; 2005 Feb; 127(1):1-8. PubMed ID: 15868782
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space.
    Wolfram U; Gross T; Pahr DH; Schwiedrzik J; Wilke HJ; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():218-28. PubMed ID: 23159819
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Determining the elastic modulus of mouse cortical bone using electronic speckle pattern interferometry (ESPI) and micro computed tomography: a new approach for characterizing small-bone material properties.
    Chattah NL; Sharir A; Weiner S; Shahar R
    Bone; 2009 Jul; 45(1):84-90. PubMed ID: 19332167
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Smooth surface micro finite element modelling of a cancellous bone analogue material.
    Leung SY; Browne M; New AM
    Proc Inst Mech Eng H; 2008 Jan; 222(1):145-9. PubMed ID: 18335725
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The human proximal femur behaves linearly elastic up to failure under physiological loading conditions.
    Juszczyk MM; Cristofolini L; Viceconti M
    J Biomech; 2011 Aug; 44(12):2259-66. PubMed ID: 21722906
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur.
    Wirtz DC; Schiffers N; Pandorf T; Radermacher K; Weichert D; Forst R
    J Biomech; 2000 Oct; 33(10):1325-30. PubMed ID: 10899344
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A finite element model of the human knee joint for the study of tibio-femoral contact.
    Donahue TL; Hull ML; Rashid MM; Jacobs CR
    J Biomech Eng; 2002 Jun; 124(3):273-80. PubMed ID: 12071261
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone.
    Wang J; Zhou B; Liu XS; Fields AJ; Sanyal A; Shi X; Adams M; Keaveny TM; Guo XE
    Bone; 2015 Mar; 72():71-80. PubMed ID: 25460571
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Bone remodeling numerical simulation on the basis of bone adaptive theory].
    Chen B; Zhao W; Sun Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):363-7. PubMed ID: 18610623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.