These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11551817)

  • 61. Strain and micromotion in intact and resurfaced composite femurs: experimental and numerical investigations.
    Pal B; Gupta S; New AM; Browne M
    J Biomech; 2010 Jul; 43(10):1923-30. PubMed ID: 20392448
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Experimental validation of finite element predicted bone strain in the human metatarsal.
    Fung A; Loundagin LL; Edwards WB
    J Biomech; 2017 Jul; 60():22-29. PubMed ID: 28668187
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load.
    Judex S; Boyd S; Qin YX; Turner S; Ye K; Müller R; Rubin C
    Ann Biomed Eng; 2003 Jan; 31(1):12-20. PubMed ID: 12572652
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions.
    Van Rietbergen B; Müller R; Ulrich D; Rüegsegger P; Huiskes R
    J Biomech; 1999 Apr; 32(4):443-51. PubMed ID: 10213036
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Influences of spherical tip radius, contact depth, and contact area on nanoindentation properties of bone.
    Paietta RC; Campbell SE; Ferguson VL
    J Biomech; 2011 Jan; 44(2):285-90. PubMed ID: 21092970
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.
    Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T
    J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Comparison of explicit finite element and mechanical simulation of the proximal femur during dynamic drop-tower testing.
    Ariza O; Gilchrist S; Widmer RP; Guy P; Ferguson SJ; Cripton PA; Helgason B
    J Biomech; 2015 Jan; 48(2):224-32. PubMed ID: 25527888
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models.
    Weinans H; Sumner DR; Igloria R; Natarajan RN
    J Biomech; 2000 Jul; 33(7):809-17. PubMed ID: 10831755
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A round-robin finite element analysis of human femur mechanics between seven participating laboratories with experimental validation.
    Kluess D; Soodmand E; Lorenz A; Pahr D; Schwarze M; Cichon R; Varady PA; Herrmann S; Buchmeier B; Schröder C; Lehner S; Kebbach M
    Comput Methods Biomech Biomed Engin; 2019 Sep; 22(12):1020-1031. PubMed ID: 31084272
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Evaluation of tension and compression forces in the canine femur in vivo.
    Manley PA; Schatzker J; Sumner-Smith G
    Arch Orthop Trauma Surg (1978); 1982; 99(3):213-6. PubMed ID: 7073450
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Distribution of Young's modulus in the cancellous bone of the proximal canine tibia.
    Sumner DR; Willke TL; Berzins A; Turner TM
    J Biomech; 1994 Aug; 27(8):1095-9. PubMed ID: 8089164
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Internal strain gradients quantified in bone under load using high-energy X-ray scattering.
    Stock SR; Yuan F; Brinson LC; Almer JD
    J Biomech; 2011 Jan; 44(2):291-6. PubMed ID: 21051040
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Stress relaxation behaviour of trabecular bone specimens.
    Deligianni DD; Maris A; Missirlis YF
    J Biomech; 1994 Dec; 27(12):1469-76. PubMed ID: 7806554
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Finite element analysis of intramedullary devices: the effect of the gap between the implant and the bone.
    Simpson DJ; Brown CJ; Yettram AL; Procter P; Andrew GJ
    Proc Inst Mech Eng H; 2008 Apr; 222(3):333-45. PubMed ID: 18491702
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dependence of yield strain of human trabecular bone on anatomic site.
    Morgan EF; Keaveny TM
    J Biomech; 2001 May; 34(5):569-77. PubMed ID: 11311697
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Trabecular bone modulus and strength can depend on specimen geometry.
    Keaveny TM; Borchers RE; Gibson LJ; Hayes WC
    J Biomech; 1993 Aug; 26(8):991-1000. PubMed ID: 8349722
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The ability of ultrasound velocity to predict the stiffness of cancellous bone in vitro.
    Hodgskinson R; Njeh CF; Currey JD; Langton CM
    Bone; 1997 Aug; 21(2):183-90. PubMed ID: 9267694
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Trabecular bone's mechanical properties are affected by its non-uniform mineral distribution.
    van der Linden JC; Birkenhäger-Frenkel DH; Verhaar JA; Weinans H
    J Biomech; 2001 Dec; 34(12):1573-80. PubMed ID: 11716859
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Measurement of the elastic properties of the cancellous bone in the femoral head of the dog].
    Behrens BA; Nolte I; Bouguecha A; Kammler M; Halbritter U; Besdo S; Meyer-Lindenberg A
    Berl Munch Tierarztl Wochenschr; 2005; 118(3-4):160-3. PubMed ID: 15803764
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Compressive behaviour of bovine cancellous bone and bone analogous materials, microCT characterisation and FE analysis.
    Guillén T; Zhang QH; Tozzi G; Ohrndorf A; Christ HJ; Tong J
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1452-61. PubMed ID: 21783155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.