BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 11551947)

  • 1. Accelerated folding in the weak hydrophobic environment of a chaperonin cavity: creation of an alternate fast folding pathway.
    Jewett AI; Baumketner A; Shea JE
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13192-7. PubMed ID: 15331776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: molecular simulations.
    Takagi F; Koga N; Takada S
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11367-72. PubMed ID: 12947041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of the folding of E. coli CspA through tryptophan substitutions.
    Vu DM; Reid KL; Rodriguez HM; Gregoret LM
    Protein Sci; 2001 Oct; 10(10):2028-36. PubMed ID: 11567094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of interactions with the chaperonin cavity on protein folding and misfolding.
    Sirur A; Knott M; Best RB
    Phys Chem Chem Phys; 2014 Apr; 16(14):6358-66. PubMed ID: 24077053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studying biomolecular folding and binding using temperature-jump mass spectrometry.
    Marchand A; Czar MF; Eggel EN; Kaeslin J; Zenobi R
    Nat Commun; 2020 Jan; 11(1):566. PubMed ID: 31992698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic differentiation of silver binding preference in protein targets:
    Wang H; Yang X; Wang M; Hu M; Xu X; Yan A; Hao Q; Li H; Sun H
    Chem Sci; 2020 Sep; 11(43):11714-11719. PubMed ID: 34123202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaperonin-Based Biolayer Interferometry To Assess the Kinetic Stability of Metastable, Aggregation-Prone Proteins.
    Lea WA; O'Neil PT; Machen AJ; Naik S; Chaudhri T; McGinn-Straub W; Tischer A; Auton MT; Burns JR; Baldwin MR; Khar KR; Karanicolas J; Fisher MT
    Biochemistry; 2016 Sep; 55(35):4885-908. PubMed ID: 27505032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the kinetic stabilities of Friedreich's ataxia clinical variants using a solid phase GroEL chaperonin capture platform.
    Correia AR; Naik S; Fisher MT; Gomes CM
    Biomolecules; 2014 Oct; 4(4):956-79. PubMed ID: 25333765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing structurally altered and aggregated states of therapeutically relevant proteins using GroEL coupled to bio-layer interferometry.
    Naik S; Kumru OS; Cullom M; Telikepalli SN; Lindboe E; Roop TL; Joshi SB; Amin D; Gao P; Middaugh CR; Volkin DB; Fisher MT
    Protein Sci; 2014 Oct; 23(10):1461-78. PubMed ID: 25043635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for folding of affinity tagged proteins using GroEL and osmolytes.
    Katayama H; McGill M; Kearns A; Brzozowski M; Degner N; Harnett B; Kornilayev B; Matković-Calogović D; Holyoak T; Calvet JP; Gogol EP; Seed J; Fisher MT
    J Struct Funct Genomics; 2009 Mar; 10(1):57-66. PubMed ID: 19082872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced recombinant M-CSF production in CHO cells by glycerol addition: model and validation.
    Liu CH; Chen LH
    Cytotechnology; 2007 Jun; 54(2):89-96. PubMed ID: 19003023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GroEL/S substrate specificity based on substrate unfolding propensity.
    Parent KN; Teschke CM
    Cell Stress Chaperones; 2007; 12(1):20-32. PubMed ID: 17441504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residues in substrate proteins that interact with GroEL in the capture process are buried in the native state.
    Stan G; Brooks BR; Lorimer GH; Thirumalai D
    Proc Natl Acad Sci U S A; 2006 Mar; 103(12):4433-8. PubMed ID: 16537402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing a high throughput refolding array using a combination of the GroEL chaperonin and osmolytes.
    Voziyan PA; Johnston M; Chao A; Bomhoff G; Fisher MT
    J Struct Funct Genomics; 2005; 6(2-3):183-8. PubMed ID: 16211517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional refolding of the Campylobacter jejuni MOMP (major outer membrane protein) porin by GroEL from the same species.
    Goulhen F; Dé E; Pagès JM; Bolla JM
    Biochem J; 2004 Mar; 378(Pt 3):851-6. PubMed ID: 14662009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural perturbation and enhancement of the chaperone-like activity of alpha-crystallin by arginine hydrochloride.
    Srinivas V; Raman B; Rao KS; Ramakrishna T; Rao ChM
    Protein Sci; 2003 Jun; 12(6):1262-70. PubMed ID: 12761397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of the GroE chaperonin requirements for sequentially and structurally homologous malate dehydrogenases: the importance of folding kinetics and solution environment.
    Tieman BC; Johnston MF; Fisher MT
    J Biol Chem; 2001 Nov; 276(48):44541-50. PubMed ID: 11551947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimal and optimal mechanisms for GroE-mediated protein folding.
    Ben-Zvi AP; Chatellier J; Fersht AR; Goloubinoff P
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15275-80. PubMed ID: 9860959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GroE chaperonin-assisted folding and assembly of dodecameric glutamine synthetase.
    Fisher MT
    Biochemistry (Mosc); 1998 Apr; 63(4):382-98. PubMed ID: 9556521
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.