BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11553643)

  • 1. Optimizing the Michaelis complex of trimethylamine dehydrogenase: identification of interactions that perturb the ionization of substrate and facilitate catalysis with trimethylamine base.
    Basran J; Sutcliffe MJ; Scrutton NS
    J Biol Chem; 2001 Nov; 276(46):42887-92. PubMed ID: 11553643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deuterium isotope effects during carbon-hydrogen bond cleavage by trimethylamine dehydrogenase. Implications for mechanism and vibrationally assisted hydrogen tunneling in wild-type and mutant enzymes.
    Basran J; Sutcliffe MJ; Scrutton NS
    J Biol Chem; 2001 Jul; 276(27):24581-7. PubMed ID: 11304539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductive half-reaction of the H172Q mutant of trimethylamine dehydrogenase: evidence against a carbanion mechanism and assignment of kinetically influential ionizations in the enzyme-substrate complex.
    Basran J; Sutcliffe MJ; Hille R; Scrutton NS
    Biochem J; 1999 Jul; 341 ( Pt 2)(Pt 2):307-14. PubMed ID: 10393087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective modification of alkylammonium ion specificity in trimethylamine dehydrogenase by the rational engineering of cation-pi bonding.
    Basran J; Mewies M; Mathews FS; Scrutton NS
    Biochemistry; 1997 Feb; 36(8):1989-98. PubMed ID: 9047296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reaction of trimethylamine dehydrogenase with trimethylamine.
    Jang MH; Basran J; Scrutton NS; Hille R
    J Biol Chem; 1999 May; 274(19):13147-54. PubMed ID: 10224069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and biochemical characterization of recombinant wild type and a C30A mutant of trimethylamine dehydrogenase from methylophilus methylotrophus (sp. W(3)A(1)).
    Trickey P; Basran J; Lian LY; Chen Z; Barton JD; Sutcliffe MJ; Scrutton NS; Mathews FS
    Biochemistry; 2000 Jul; 39(26):7678-88. PubMed ID: 10869173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of Tyr-169 of trimethylamine dehydrogenase in substrate oxidation and magnetic interaction between FMN cofactor and the 4Fe/4S center.
    Basran J; Jang MH; Sutcliffe MJ; Hille R; Scrutton NS
    J Biol Chem; 1999 May; 274(19):13155-61. PubMed ID: 10224070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the dynamic interface between trimethylamine dehydrogenase (TMADH) and electron transferring flavoprotein (ETF) in the TMADH-2ETF complex: role of the Arg-alpha237 (ETF) and Tyr-442 (TMADH) residue pair.
    Burgess SG; Messiha HL; Katona G; Rigby SE; Leys D; Scrutton NS
    Biochemistry; 2008 May; 47(18):5168-81. PubMed ID: 18407658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights on the mechanism of amine oxidation catalyzed by D-arginine dehydrogenase through pH and kinetic isotope effects.
    Yuan H; Xin Y; Hamelberg D; Gadda G
    J Am Chem Soc; 2011 Nov; 133(46):18957-65. PubMed ID: 21999550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of a flavin iminoquinone methide in the formation of 6-hydroxyflavin mononucleotide in trimethylamine dehydrogenase: a rationale for the existence of 8alpha-methyl and C6-linked covalent flavoproteins.
    Mewies M; Basran J; Packman LC; Hille R; Scrutton NS
    Biochemistry; 1997 Jun; 36(23):7162-8. PubMed ID: 9188716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential coupling through Val-344 and Tyr-442 of trimethylamine dehydrogenase in electron transfer reactions with ferricenium ions and electron transferring flavoprotein.
    Basran J; Chohan KK; Sutcliffe MJ; Scrutton NS
    Biochemistry; 2000 Aug; 39(31):9188-200. PubMed ID: 10924112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic model for the regulation by substrate of intramolecular electron transfer in trimethylamine dehydrogenase.
    Falzon L; Davidson VL
    Biochemistry; 1996 Feb; 35(7):2445-52. PubMed ID: 8652588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavin radicals, conformational sampling and robust design principles in interprotein electron transfer: the trimethylamine dehydrogenase-electron-transferring flavoprotein complex.
    Leys D; Basran J; Talfournier F; Chohan KK; Munro AW; Sutcliffe MJ; Scrutton NS
    Biochem Soc Symp; 2004; (71):1-14. PubMed ID: 15777008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An exposed tyrosine on the surface of trimethylamine dehydrogenase facilitates electron transfer to electron transferring flavoprotein: kinetics of transfer in wild-type and mutant complexes.
    Wilson EK; Huang L; Sutcliffe MJ; Mathews FS; Hille R; Scrutton NS
    Biochemistry; 1997 Jan; 36(1):41-8. PubMed ID: 8993316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pH dependence of kinetic isotope effects in monoamine oxidase A indicates stabilization of the neutral amine in the enzyme-substrate complex.
    Dunn RV; Marshall KR; Munro AW; Scrutton NS
    FEBS J; 2008 Aug; 275(15):3850-8. PubMed ID: 18573102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monomeric sarcosine oxidase: 1. Flavin reactivity and active site binding determinants.
    Wagner MA; Trickey P; Chen ZW; Mathews FS; Jorns MS
    Biochemistry; 2000 Aug; 39(30):8813-24. PubMed ID: 10913292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiolytic studies of trimethylamine dehydrogenase. Spectral deconvolution of the neutral and anionic flavin semiquinone, and determination of rate constants for electron transfer in the one-electron reduced enzyme.
    Anderson RF; Jang MH; Hille R
    J Biol Chem; 2000 Oct; 275(40):30781-6. PubMed ID: 10859304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into the chemistry of flavin reduction and oxidation in Escherichia coli dihydroorotate dehydrogenase obtained by rapid reaction studies.
    Palfey BA; Björnberg O; Jensen KF
    Biochemistry; 2001 Apr; 40(14):4381-90. PubMed ID: 11284694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH and deuterium isotope effects on the reaction of trimethylamine dehydrogenase with dimethylamine.
    Wanninayake US; Subedi B; Fitzpatrick PF
    Arch Biochem Biophys; 2019 Nov; 676():108136. PubMed ID: 31604072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox cycles in trimethylamine dehydrogenase and mechanism of substrate inhibition.
    Roberts P; Basran J; Wilson EK; Hille R; Scrutton NS
    Biochemistry; 1999 Nov; 38(45):14927-40. PubMed ID: 10555975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.