BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11553643)

  • 21. Prototropic control of intramolecular electron transfer in trimethylamine dehydrogenase.
    Rohlfs RJ; Huang L; Hille R
    J Biol Chem; 1995 Sep; 270(38):22196-207. PubMed ID: 7673198
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning and characterization of histamine dehydrogenase from Nocardioides simplex.
    Limburg J; Mure M; Klinman JP
    Arch Biochem Biophys; 2005 Apr; 436(1):8-22. PubMed ID: 15752704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The reaction of trimethylamine dehydrogenase with diethylmethylamine.
    Rohlfs RJ; Hille R
    J Biol Chem; 1994 Dec; 269(49):30869-79. PubMed ID: 7983019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. pH and kinetic isotope effects on sarcosine oxidation by N-methyltryptophan oxidase.
    Ralph EC; Fitzpatrick PF
    Biochemistry; 2005 Mar; 44(8):3074-81. PubMed ID: 15723552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conserved residue His-257 of
    Fang X; Osipiuk J; Chakravarthy S; Yuan M; Menzer WM; Nissen D; Liang P; Raba DA; Tuz K; Howard AJ; Joachimiak A; Minh DDL; Juarez O
    J Biol Chem; 2019 Sep; 294(37):13800-13810. PubMed ID: 31350338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the catalytic role of the conserved active site residue His466 of choline oxidase.
    Ghanem M; Gadda G
    Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flavinylation in wild-type trimethylamine dehydrogenase and differentially charged mutant enzymes: a study of the protein environment around the N1 of the flavin isoalloxazine.
    Mewies M; Packman LC; Mathews FS; Scrutton NS
    Biochem J; 1996 Jul; 317 ( Pt 1)(Pt 1):267-72. PubMed ID: 8694773
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanistic studies on the dehydrogenases of methylotrophic bacteria. 2. Kinetic studies on the intramolecular electron transfer in trimethylamine and dimethylamine dehydrogenase.
    Steenkamp DJ; Beinert H
    Biochem J; 1982 Nov; 207(2):241-52. PubMed ID: 6297456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electron tunneling in substrate-reduced trimethylamine dehydrogenase: kinetics of electron transfer and analysis of the tunneling pathway.
    Wilson EK; Mathews FS; Packman LC; Scrutton NS
    Biochemistry; 1995 Feb; 34(8):2584-91. PubMed ID: 7873539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase on the pKa values of active site residues and on the pH dependence of catalysis.
    Czerwinski RM; Harris TK; Johnson WH; Legler PM; Stivers JT; Mildvan AS; Whitman CP
    Biochemistry; 1999 Sep; 38(38):12358-66. PubMed ID: 10493803
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of electrophilic and general base catalysis in the mechanism of Escherichia coli uracil DNA glycosylase.
    Drohat AC; Jagadeesh J; Ferguson E; Stivers JT
    Biochemistry; 1999 Sep; 38(37):11866-75. PubMed ID: 10508389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reaction of the C30A mutant of trimethylamine dehydrogenase with diethylmethylamine.
    Huang L; Scrutton NS; Hille R
    J Biol Chem; 1996 Jun; 271(23):13401-6. PubMed ID: 8662829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tissue factor alters the pK(a) values of catalytically important factor VIIa residues.
    Neuenschwander PF; Vernon JT; Morrissey JH
    Biochemistry; 2002 Mar; 41(10):3364-71. PubMed ID: 11876644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of pH and kinetic isotope effects to establish chemistry as rate-limiting in oxidation of a peptide substrate by LSD1.
    Gaweska H; Henderson Pozzi M; Schmidt DM; McCafferty DG; Fitzpatrick PF
    Biochemistry; 2009 Jun; 48(23):5440-5. PubMed ID: 19408960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein dynamics control proton transfers to the substrate on the His72Asn mutant of p-hydroxybenzoate hydroxylase.
    Frederick KK; Ballou DP; Palfey BA
    Biochemistry; 2001 Apr; 40(13):3891-9. PubMed ID: 11300768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine.
    Schlegel BP; Ratnam K; Penning TM
    Biochemistry; 1998 Aug; 37(31):11003-11. PubMed ID: 9692994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron transfer and conformational change in complexes of trimethylamine dehydrogenase and electron transferring flavoprotein.
    Jones M; Talfournier F; Bobrov A; Grossmann JG; Vekshin N; Sutcliffe MJ; Scrutton NS
    J Biol Chem; 2002 Mar; 277(10):8457-65. PubMed ID: 11756429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The interaction of trimethylamine dehydrogenase and electron-transferring flavoprotein.
    Shi W; Mersfelder J; Hille R
    J Biol Chem; 2005 May; 280(21):20239-46. PubMed ID: 15760891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Substrate activation by acyl-CoA dehydrogenases: transition-state stabilization and pKs of involved functional groups.
    Vock P; Engst S; Eder M; Ghisla S
    Biochemistry; 1998 Feb; 37(7):1848-60. PubMed ID: 9485310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The approach to the Michaelis complex in lactate dehydrogenase: the substrate binding pathway.
    McClendon S; Zhadin N; Callender R
    Biophys J; 2005 Sep; 89(3):2024-32. PubMed ID: 15980172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.