These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 11553722)

  • 1. Transcriptional autoregulation and inhibition of mRNA translation of amino acid regulator gene cpcA of filamentous fungus Aspergillus nidulans.
    Hoffmann B; Valerius O; Andermann M; Braus GH
    Mol Biol Cell; 2001 Sep; 12(9):2846-57. PubMed ID: 11553722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Aspergillus niger GCN4 homologue, cpcA, is transcriptionally regulated and encodes an unusual leucine zipper.
    Wanke C; Eckert S; Albrecht G; van Hartingsveldt W; Punt PJ; van den Hondel CA; Braus GH
    Mol Microbiol; 1997 Jan; 23(1):23-33. PubMed ID: 9004217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of jlbA mRNA synthesis for a putative bZIP protein of Aspergillus nidulans by amino acid starvation.
    Strittmatter AW; Irniger S; Braus GH
    Curr Genet; 2001 Jul; 39(5-6):327-34. PubMed ID: 11525406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. c-Jun and RACK1 homologues regulate a control point for sexual development in Aspergillus nidulans.
    Hoffmann B; Wanke C; Lapaglia SK; Braus GH
    Mol Microbiol; 2000 Jul; 37(1):28-41. PubMed ID: 10931303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single inhibitory upstream open reading frame (uORF) is sufficient to regulate Candida albicans GCN4 translation in response to amino acid starvation conditions.
    Sundaram A; Grant CM
    RNA; 2014 Apr; 20(4):559-67. PubMed ID: 24570481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of GCD14 and GCD15, novel genes required for translational repression of GCN4 mRNA in Saccharomyces cerevisiae.
    Cuesta R; Hinnebusch AG; Tamame M
    Genetics; 1998 Mar; 148(3):1007-20. PubMed ID: 9539420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular analysis of GCN3, a translational activator of GCN4: evidence for posttranslational control of GCN3 regulatory function.
    Hannig EM; Hinnebusch AG
    Mol Cell Biol; 1988 Nov; 8(11):4808-20. PubMed ID: 3062370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation mechanisms of the HAC1-mediated unfolded protein response in filamentous fungi.
    Saloheimo M; Valkonen M; Penttilä M
    Mol Microbiol; 2003 Feb; 47(4):1149-61. PubMed ID: 12581366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hierarchy of trans-acting factors modulates translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae.
    Hinnebusch AG
    Mol Cell Biol; 1985 Sep; 5(9):2349-60. PubMed ID: 3915540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspergillus asexual reproduction and sexual reproduction are differentially affected by transcriptional and translational mechanisms regulating stunted gene expression.
    Wu J; Miller BL
    Mol Cell Biol; 1997 Oct; 17(10):6191-201. PubMed ID: 9315680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantitative model for translational control of the GCN4 gene of Saccharomyces cerevisiae.
    Abastado JP; Miller PF; Hinnebusch AG
    New Biol; 1991 May; 3(5):511-24. PubMed ID: 1883814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control.
    Abastado JP; Miller PF; Jackson BM; Hinnebusch AG
    Mol Cell Biol; 1991 Jan; 11(1):486-96. PubMed ID: 1986242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2.
    Hinnebusch AG
    Mol Microbiol; 1993 Oct; 10(2):215-23. PubMed ID: 7934812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cis-acting sequences involved in the translational control of GCN4 expression.
    Miller PF; Hinnebusch AG
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):151-4. PubMed ID: 2207139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple cis-acting elements modulate the translational efficiency of GCN4 mRNA in yeast.
    Tzamarias D; Alexandraki D; Thireos G
    Proc Natl Acad Sci U S A; 1986 Jul; 83(13):4849-53. PubMed ID: 3088566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability.
    Vilela C; Linz B; Rodrigues-Pousada C; McCarthy JE
    Nucleic Acids Res; 1998 Mar; 26(5):1150-9. PubMed ID: 9469820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the Aspergillus nidulans hisB gene by histidine starvation.
    Busch S; Hoffmann B; Valerius O; Starke K; Düvel K; Braus GH
    Curr Genet; 2001 Jan; 38(6):314-22. PubMed ID: 11270573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the pH signal transduction pathway gene palA of Aspergillus nidulans and identification of possible homologs.
    Negrete-Urtasun S; Denison SH; Arst HN
    J Bacteriol; 1997 Mar; 179(5):1832-5. PubMed ID: 9045850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of the cross-pathway control on the regulation of lysine and penicillin biosynthesis in Aspergillus nidulans.
    Busch S; Bode HB; Brakhage AA; Braus GH
    Curr Genet; 2003 Jan; 42(4):209-19. PubMed ID: 12589472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of an initiation factor and protein phosphorylation in translational control of GCN4 mRNA.
    Hinnebusch AG
    Trends Biochem Sci; 1990 Apr; 15(4):148-52. PubMed ID: 2187295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.