BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 11553780)

  • 1. A physiological role for oxalic acid biosynthesis in the wood-rotting basidiomycete Fomitopsis palustris.
    Munir E; Yoon JJ; Tokimatsu T; Hattori T; Shimada M
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11126-30. PubMed ID: 11553780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcellular localization of glyoxylate cycle key enzymes involved in oxalate biosynthesis of wood-destroying basidiomycete Fomitopsis palustris grown on glucose.
    Sakai S; Nishide T; Munir E; Baba K; Inui H; Nakano Y; Hattori T; Shimada M
    Microbiology (Reading); 2006 Jun; 152(Pt 6):1857-1866. PubMed ID: 16735748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of isocitrate lyase from the wood-destroying basidiomycete Fomitopsis palustris grown on glucose.
    Munir E; Hattori T; Shimada M
    Arch Biochem Biophys; 2002 Mar; 399(2):225-31. PubMed ID: 11888209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of malate synthase from the glucose-grown wood-rotting basidiomycete Fomitopsis palustris.
    Munir E; Hattori T; Shimada M
    Biosci Biotechnol Biochem; 2002 Mar; 66(3):576-81. PubMed ID: 12005052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A metabolic role of the glyoxylate and tricarboxylic acid cycles for development of the copper-tolerant brown-rot fungus Fomitopsis palustris.
    Yoon JJ; Hattori T; Shimada M
    FEMS Microbiol Lett; 2002 Nov; 217(1):9-14. PubMed ID: 12445639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of NADP-linked isocitrate dehydrogenase from the copper-tolerant wood-rotting basidiomycete Fomitopsis palustris.
    Yoon JJ; Hattori T; Shimada M
    Biosci Biotechnol Biochem; 2003 Jan; 67(1):114-20. PubMed ID: 12619682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxalate efflux transporter from the brown rot fungus Fomitopsis palustris.
    Watanabe T; Shitan N; Suzuki S; Umezawa T; Shimada M; Yazaki K; Hattori T
    Appl Environ Microbiol; 2010 Dec; 76(23):7683-90. PubMed ID: 20889782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxalate production by wood-rotting fungi growing in toxic metal-amended medium.
    Jarosz-Wilkolazka A; Gadd GM
    Chemosphere; 2003 Jul; 52(3):541-7. PubMed ID: 12738291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of TCA cycle enzymes and aluminum stress in Pseudomonas fluorescens.
    Hamel RD; Appanna VD
    J Inorg Biochem; 2001 Nov; 87(1-2):1-8. PubMed ID: 11709206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes.
    Gadd GM
    Adv Microb Physiol; 1999; 41():47-92. PubMed ID: 10500844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxalate accumulation from citrate by Aspergillus niger. II. Involvement of the tricarboxylic acid cyclase.
    Müller HM; Frosch S
    Arch Microbiol; 1975 Jun; 104(2):159-62. PubMed ID: 1156100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyporales Brown Rot Species Fomitopsis pinicola: Enzyme Activity Profiles, Oxalic Acid Production, and Fe
    Shah F; Mali T; Lundell TK
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29439983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ATP and oxalate generating variant tricarboxylic acid cycle counters aluminum toxicity in Pseudomonas fluorescens.
    Singh R; Lemire J; Mailloux RJ; Chénier D; Hamel R; Appanna VD
    PLoS One; 2009 Oct; 4(10):e7344. PubMed ID: 19809498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxalic acid degradation in wood-rotting fungi. Searching for a new source of oxalate oxidase.
    Grąz M; Ruminowicz-Stefaniuk M; Jarosz-Wilkołazka A
    World J Microbiol Biotechnol; 2022 Nov; 39(1):13. PubMed ID: 36380124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of oxalic acid in fungal and bacterial metabolism and its biotechnological potential.
    Grąz M
    World J Microbiol Biotechnol; 2024 Apr; 40(6):178. PubMed ID: 38662173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxalic acid biosynthesis and oxalacetate acetylhydrolase activity in Streptomyces cattleya.
    Houck DR; Inamine E
    Arch Biochem Biophys; 1987 Nov; 259(1):58-65. PubMed ID: 3688887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repression of oxalic acid-mediated mineral phosphate solubilization in rhizospheric isolates of Klebsiella pneumoniae by succinate.
    Rajput MS; Naresh Kumar G; Rajkumar S
    Arch Microbiol; 2013 Feb; 195(2):81-8. PubMed ID: 23124768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillin.
    Shimizu M; Yuda N; Nakamura T; Tanaka H; Wariishi H
    Proteomics; 2005 Oct; 5(15):3919-31. PubMed ID: 16217726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assimilation of oxalate, acetate, and CO2 by Oxalobacter formigenes.
    Cornick NA; Allison MJ
    Can J Microbiol; 1996 Nov; 42(11):1081-6. PubMed ID: 8941983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A genomics-informed study of oxalate and cellulase regulation by brown rot wood-degrading fungi.
    Presley GN; Zhang J; Schilling JS
    Fungal Genet Biol; 2018 Mar; 112():64-70. PubMed ID: 27543342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.