These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 11554305)
1. Yeast base excision repair: interconnections and networks. Doetsch PW; Morey NJ; Swanson RL; Jinks-Robertson S Prog Nucleic Acid Res Mol Biol; 2001; 68():29-39. PubMed ID: 11554305 [TBL] [Abstract][Full Text] [Related]
2. Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Swanson RL; Morey NJ; Doetsch PW; Jinks-Robertson S Mol Cell Biol; 1999 Apr; 19(4):2929-35. PubMed ID: 10082560 [TBL] [Abstract][Full Text] [Related]
3. Deletion of the MAG1 DNA glycosylase gene suppresses alkylation-induced killing and mutagenesis in yeast cells lacking AP endonucleases. Xiao W; Chow BL; Hanna M; Doetsch PW Mutat Res; 2001 Dec; 487(3-4):137-47. PubMed ID: 11738940 [TBL] [Abstract][Full Text] [Related]
4. Defects in base excision repair combined with elevated intracellular dCTP levels dramatically reduce mutation induction in yeast by ethyl methanesulfonate and N-methyl-N'-nitro-N-nitrosoguanidine. Kunz BA; Henson ES; Karthikeyan R; Kuschak T; McQueen SA; Scott CA; Xiao W Environ Mol Mutagen; 1998; 32(2):173-8. PubMed ID: 9776180 [TBL] [Abstract][Full Text] [Related]
5. The mechanism of switching among multiple BER pathways. Dogliotti E; Fortini P; Pascucci B; Parlanti E Prog Nucleic Acid Res Mol Biol; 2001; 68():3-27. PubMed ID: 11554307 [TBL] [Abstract][Full Text] [Related]
6. Involvement of two endonuclease III homologs in the base excision repair pathway for the processing of DNA alkylation damage in Saccharomyces cerevisiae. Hanna M; Chow BL; Morey NJ; Jinks-Robertson S; Doetsch PW; Xiao W DNA Repair (Amst); 2004 Jan; 3(1):51-9. PubMed ID: 14697759 [TBL] [Abstract][Full Text] [Related]
7. Base excision repair activities required for yeast to attain a full chronological life span. Maclean MJ; Aamodt R; Harris N; Alseth I; Seeberg E; Bjørås M; Piper PW Aging Cell; 2003 Apr; 2(2):93-104. PubMed ID: 12882322 [TBL] [Abstract][Full Text] [Related]
8. Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions. Hazra TK; Hill JW; Izumi T; Mitra S Prog Nucleic Acid Res Mol Biol; 2001; 68():193-205. PubMed ID: 11554297 [TBL] [Abstract][Full Text] [Related]
9. The S. cerevisiae Mag1 3-methyladenine DNA glycosylase modulates susceptibility to homologous recombination. Hendricks CA; Razlog M; Matsuguchi T; Goyal A; Brock AL; Engelward BP DNA Repair (Amst); 2002 Aug; 1(8):645-59. PubMed ID: 12509287 [TBL] [Abstract][Full Text] [Related]
10. Synergism between base excision repair, mediated by the DNA glycosylases Ntg1 and Ntg2, and nucleotide excision repair in the removal of oxidatively damaged DNA bases in Saccharomyces cerevisiae. Gellon L; Barbey R; Auffret van der Kemp P; Thomas D; Boiteux S Mol Genet Genomics; 2001 Aug; 265(6):1087-96. PubMed ID: 11523781 [TBL] [Abstract][Full Text] [Related]
11. Repair of DNA strand breaks by the overlapping functions of lesion-specific and non-lesion-specific DNA 3' phosphatases. Vance JR; Wilson TE Mol Cell Biol; 2001 Nov; 21(21):7191-8. PubMed ID: 11585902 [TBL] [Abstract][Full Text] [Related]
12. Ntg1p, the base excision repair protein, generates mutagenic intermediates in yeast mitochondrial DNA. Phadnis N; Mehta R; Meednu N; Sia EA DNA Repair (Amst); 2006 Jul; 5(7):829-39. PubMed ID: 16730479 [TBL] [Abstract][Full Text] [Related]
13. Evidence for the involvement of nucleotide excision repair in the removal of abasic sites in yeast. Torres-Ramos CA; Johnson RE; Prakash L; Prakash S Mol Cell Biol; 2000 May; 20(10):3522-8. PubMed ID: 10779341 [TBL] [Abstract][Full Text] [Related]
14. Molecular mechanism of PCNA-dependent base excision repair. Matsumoto Y Prog Nucleic Acid Res Mol Biol; 2001; 68():129-38. PubMed ID: 11554292 [TBL] [Abstract][Full Text] [Related]
15. Effects of hexavalent chromium on the survival and cell cycle distribution of DNA repair-deficient S. cerevisiae. O'Brien TJ; Fornsaglio JL; Ceryak S; Patierno SR DNA Repair (Amst); 2002 Aug; 1(8):617-27. PubMed ID: 12509285 [TBL] [Abstract][Full Text] [Related]
16. Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Glassner BJ; Rasmussen LJ; Najarian MT; Posnick LM; Samson LD Proc Natl Acad Sci U S A; 1998 Aug; 95(17):9997-10002. PubMed ID: 9707589 [TBL] [Abstract][Full Text] [Related]
17. DNA damage recognition and repair pathway coordination revealed by the structural biochemistry of DNA repair enzymes. Hosfield DJ; Daniels DS; Mol CD; Putnam CD; Parikh SS; Tainer JA Prog Nucleic Acid Res Mol Biol; 2001; 68():315-47. PubMed ID: 11554309 [TBL] [Abstract][Full Text] [Related]
18. Msh1p counteracts oxidative lesion-induced instability of mtDNA and stimulates mitochondrial recombination in Saccharomyces cerevisiae. Kaniak A; Dzierzbicki P; Rogowska AT; Malc E; Fikus M; Ciesla Z DNA Repair (Amst); 2009 Mar; 8(3):318-29. PubMed ID: 19056520 [TBL] [Abstract][Full Text] [Related]
19. Keynote: past, present, and future aspects of base excision repair. Lindahl T Prog Nucleic Acid Res Mol Biol; 2001; 68():xvii-xxx. PubMed ID: 11554316 [TBL] [Abstract][Full Text] [Related]
20. The repair of DNA methylation damage in Saccharomyces cerevisiae. Xiao W; Chow BL; Rathgeber L Curr Genet; 1996 Dec; 30(6):461-8. PubMed ID: 8939806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]