These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11554451)

  • 61. Domain-specific fluorescence resonance energy transfer (FRET) sensors of metallothionein/thionein.
    Hong SH; Hao Q; Maret W
    Protein Eng Des Sel; 2005 Jun; 18(6):255-63. PubMed ID: 15911539
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sulfur and selenium antioxidants: challenging radical scavenging mechanisms and developing structure-activity relationships based on metal binding.
    Zimmerman MT; Bayse CA; Ramoutar RR; Brumaghim JL
    J Inorg Biochem; 2015 Apr; 145():30-40. PubMed ID: 25600984
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Self-assembly and redox modulation of the cavity size of an unusual rectangular iron thiolate aryldiisocyanide metallocyclophane.
    Lin PC; Chen HY; Chen PY; Chiang MH; Chiang MY; Kuo TS; Hsu SC
    Inorg Chem; 2011 Nov; 50(21):10825-34. PubMed ID: 21999490
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Zinc-thiolate complexes of the bis(pyrazolyl)(thioimidazolyl)hydroborate tripods for the modeling of thiolate alkylating enzymes.
    Ji M; Benkmil B; Vahrenkamp H
    Inorg Chem; 2005 May; 44(10):3518-23. PubMed ID: 15877434
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The redox biology of redox-inert zinc ions.
    Maret W
    Free Radic Biol Med; 2019 Apr; 134():311-326. PubMed ID: 30625394
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stabilization of the catalytic thiolate in a mammalian glutaredoxin: structure, dynamics and electrostatics of reduced pig glutaredoxin and its mutants.
    Foloppe N; Nilsson L
    J Mol Biol; 2007 Sep; 372(3):798-816. PubMed ID: 17681533
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Understanding the pK(a) of redox cysteines: the key role of hydrogen bonding.
    Roos G; Foloppe N; Messens J
    Antioxid Redox Signal; 2013 Jan; 18(1):94-127. PubMed ID: 22746677
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Selenium. Mechanistic aspects of anticarcinogenic action.
    Schrauzer GN
    Biol Trace Elem Res; 1992; 33():51-62. PubMed ID: 1379460
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Chemoselectivity in chemical biology: acyl transfer reactions with sulfur and selenium.
    McGrath NA; Raines RT
    Acc Chem Res; 2011 Sep; 44(9):752-61. PubMed ID: 21639109
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sulfane Decreases the Nucleophilic Reactivity of Zinc Thiolates: Implications for Biological Reactive Sulfur Species.
    Seo WTM; Ballesteros M; Tsui EY
    J Am Chem Soc; 2022 Nov; 144(45):20630-20640. PubMed ID: 36326496
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Selenium in human plasma: levels in blood proteins and behavior upon dialysis, acidification, and reduction.
    Rhead WJ; Evans GA; Schrauzer GN
    Bioinorg Chem; 1974 Apr; 3(3):217-23. PubMed ID: 4214146
    [No Abstract]   [Full Text] [Related]  

  • 73. Ligand Basicity and Chelate Effects on Sulfur Insertion vs. Sulfur Reduction by Zinc Thiolate Complexes.
    Seo WTM; Tsang VA; Ballesteros M; Tsui EY
    Chemistry; 2024 Jul; 30(41):e202401280. PubMed ID: 38739534
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A dynamic zinc redox switch.
    Neculai AM; Neculai D; Griesinger C; Vorholt JA; Becker S
    J Biol Chem; 2005 Jan; 280(4):2826-30. PubMed ID: 15548539
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Molecular dynamics simulation of metallothionein-drug complexes.
    Szilágyi Z; Fenselau C
    Drug Metab Dispos; 2000 Feb; 28(2):174-9. PubMed ID: 10640515
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Metal and redox modulation of cysteine protein function.
    Giles NM; Watts AB; Giles GI; Fry FH; Littlechild JA; Jacob C
    Chem Biol; 2003 Aug; 10(8):677-93. PubMed ID: 12954327
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Optical methods for measuring zinc binding and release, zinc coordination environments in zinc finger proteins, and redox sensitivity and activity of zinc-bound thiols.
    Maret W
    Methods Enzymol; 2002; 348():230-7. PubMed ID: 11885276
    [No Abstract]   [Full Text] [Related]  

  • 78. Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs.
    Huber RE; Criddle RS
    Arch Biochem Biophys; 1967 Oct; 122(1):164-73. PubMed ID: 6076213
    [No Abstract]   [Full Text] [Related]  

  • 79. Selenium versus sulfur: Reversibility of chemical reactions and resistance to permanent oxidation in proteins and nucleic acids.
    Maroney MJ; Hondal RJ
    Free Radic Biol Med; 2018 Nov; 127():228-237. PubMed ID: 29588180
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A selenium-catalysed para-amination of phenols.
    Yan D; Wang G; Xiong F; Sun WY; Shi Z; Lu Y; Li S; Zhao J
    Nat Commun; 2018 Oct; 9(1):4293. PubMed ID: 30327477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.