BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 11554758)

  • 1. Evidence that bacterial cyanide oxygenase is a pterin-dependent hydroxylase.
    Kunz DA; Fernandez RF; Parab P
    Biochem Biophys Res Commun; 2001 Sep; 287(2):514-8. PubMed ID: 11554758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic assimilation of cyanide via pterin-dependent oxygenolytic cleavage to ammonia and formate in Pseudomonas fluorescens NCIMB 11764.
    Fernandez RF; Dolghih E; Kunz DA
    Appl Environ Microbiol; 2004 Jan; 70(1):121-8. PubMed ID: 14711633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial cyanide oxygenase is a suite of enzymes catalyzing the scavenging and adventitious utilization of cyanide as a nitrogenous growth substrate.
    Fernandez RF; Kunz DA
    J Bacteriol; 2005 Sep; 187(18):6396-402. PubMed ID: 16159773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative routes of enzymic cyanide metabolism in Pseudomonas fluorescens NCIMB 11764.
    Kunz DA; Wang CS; Chen JL
    Microbiology (Reading); 1994 Jul; 140 ( Pt 7)():1705-12. PubMed ID: 8075806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Order of substrate binding in bacterial phenylalanine hydroxylase and its mechanistic implication for pterin-dependent oxygenases.
    Volner A; Zoidakis J; Abu-Omar MM
    J Biol Inorg Chem; 2003 Jan; 8(1-2):121-8. PubMed ID: 12459906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analeptic agent from microbes upon cyanide degradation.
    Murugesan T; Durairaj N; Ramasamy M; Jayaraman K; Palaniswamy M; Jayaraman A
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1557-1565. PubMed ID: 29285551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic dehalogenation of pentachlorophenol by Pseudomonas fluorescens of the microbial community from tannery effluent.
    Shah S; Thakur IS
    Curr Microbiol; 2003 Jul; 47(1):65-70. PubMed ID: 12783196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial attack on phenolic ethers. Preliminary studies on systems transporting electrons to the substrate binding components in bacterial O-dealkylases.
    Cartwright NJ; Broadbent DA
    Microbios; 1974 Apr; 10(38):87-96. PubMed ID: 4211829
    [No Abstract]   [Full Text] [Related]  

  • 9. P-Hydroxybenzoate hydroxylase and melilotate hydroxylase.
    Husain M; Schopfer LM; Massey V
    Methods Enzymol; 1978; 53():543-58. PubMed ID: 30879
    [No Abstract]   [Full Text] [Related]  

  • 10. Cyanide metabolism of Pseudomonas pseudoalcaligenes CECT5344: role of siderophores.
    Huertas MJ; Luque-Almagro VM; Martínez-Luque M; Blasco R; Moreno-Vivián C; Castillo F; Roldán MD
    Biochem Soc Trans; 2006 Feb; 34(Pt 1):152-5. PubMed ID: 16417508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of alpha-keto acids as essential components in cyanide assimilation by Pseudomonas fluorescens NCIMB 11764.
    Kunz DA; Chen JL; Pan G
    Appl Environ Microbiol; 1998 Nov; 64(11):4452-9. PubMed ID: 9797306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning, expression, and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas fluorescens DSM 50106 in E. coli.
    Kirschner A; Altenbuchner J; Bornscheuer UT
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1065-72. PubMed ID: 16944127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterologous expression, purification, and characterization of an l-ornithine N(5)-hydroxylase involved in pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa.
    Ge L; Seah SY
    J Bacteriol; 2006 Oct; 188(20):7205-10. PubMed ID: 17015659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dimeric form of flavocytochrome P450 BM3 is catalytically functional as a fatty acid hydroxylase.
    Neeli R; Girvan HM; Lawrence A; Warren MJ; Leys D; Scrutton NS; Munro AW
    FEBS Lett; 2005 Oct; 579(25):5582-8. PubMed ID: 16214136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of cyanide as nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: evidence for multiple pathways of metabolic conversion.
    Kunz DA; Nagappan O; Silva-Avalos J; Delong GT
    Appl Environ Microbiol; 1992 Jun; 58(6):2022-9. PubMed ID: 1622281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenylacetylene reversibly inhibits the phenol hydroxylase of Pseudomonas sp. CF600 at high concentrations but is oxidized at lower concentrations.
    Kagle J; Hay AG
    Appl Microbiol Biotechnol; 2006 Sep; 72(2):306-15. PubMed ID: 16485115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Role of NADH in the endogeneous metabolism of types Pseudomonas fluorescens].
    Behr P; Meyer E; Wurtz B
    C R Seances Soc Biol Fil; 1974; 168(6-7):843-7. PubMed ID: 4156494
    [No Abstract]   [Full Text] [Related]  

  • 18. The reductase of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii requires p-hydroxyphenylacetate for effective catalysis.
    Sucharitakul J; Chaiyen P; Entsch B; Ballou DP
    Biochemistry; 2005 Aug; 44(30):10434-42. PubMed ID: 16042421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Primary oxidation mechanisms in degradation of aliphatic hydrocarbons by bacterial enzyme systems (author's transl)].
    Hammer KD; Liemann F
    Zentralbl Bakteriol Orig B; 1976 Jul; 162(1-2):169-79. PubMed ID: 998045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Properties of unrelated salicylate hydroxylases in bacteria of the genus pseudomon].
    Puntus TF; Vlasova EP; Sokolov AP; Zaharchenko NS; Funtikova TV
    Prikl Biokhim Mikrobiol; 2015; 51(2):213-20. PubMed ID: 26027357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.