BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 11554795)

  • 1. Tyrosine hydrogen bonds make a large contribution to protein stability.
    Pace CN; Horn G; Hebert EJ; Bechert J; Shaw K; Urbanikova L; Scholtz JM; Sevcik J
    J Mol Biol; 2001 Sep; 312(2):393-404. PubMed ID: 11554795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asp79 makes a large, unfavorable contribution to the stability of RNase Sa.
    Trevino SR; Gokulan K; Newsom S; Thurlkill RL; Shaw KL; Mitkevich VA; Makarov AA; Sacchettini JC; Scholtz JM; Pace CN
    J Mol Biol; 2005 Dec; 354(4):967-78. PubMed ID: 16288913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of hydrogen bonds to the conformational stability of human lysozyme: calorimetry and X-ray analysis of six tyrosine --> phenylalanine mutants.
    Yamagata Y; Kubota M; Sumikawa Y; Funahashi J; Takano K; Fujii S; Yutani K
    Biochemistry; 1998 Jun; 37(26):9355-62. PubMed ID: 9649316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational stability and thermodynamics of folding of ribonucleases Sa, Sa2 and Sa3.
    Pace CN; Hebert EJ; Shaw KL; Schell D; Both V; Krajcikova D; Sevcik J; Wilson KS; Dauter Z; Hartley RW; Grimsley GR
    J Mol Biol; 1998 May; 279(1):271-86. PubMed ID: 9636716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of a conserved asparagine to the conformational stability of ribonucleases Sa, Ba, and T1.
    Hebert EJ; Giletto A; Sevcik J; Urbanikova L; Wilson KS; Dauter Z; Pace CN
    Biochemistry; 1998 Nov; 37(46):16192-200. PubMed ID: 9819211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen bonding increases packing density in the protein interior.
    Schell D; Tsai J; Scholtz JM; Pace CN
    Proteins; 2006 May; 63(2):278-82. PubMed ID: 16353166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of hydrogen bonds to the conformational stability of human lysozyme: calorimetry and X-ray analysis of six Ser --> Ala mutants.
    Takano K; Yamagata Y; Kubota M; Funahashi J; Fujii S; Yutani K
    Biochemistry; 1999 May; 38(20):6623-9. PubMed ID: 10350481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational and structural-based analyses of the osmolyte effect on protein stability.
    Takano K; Saito M; Morikawa M; Kanaya S
    J Biochem; 2004 Jun; 135(6):701-8. PubMed ID: 15213245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable contributions of tyrosine residues to the structural and spectroscopic properties of the factor for inversion stimulation.
    Boswell S; Mathew J; Beach M; Osuna R; Colón W
    Biochemistry; 2004 Mar; 43(10):2964-77. PubMed ID: 15005633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure reveals two alternative conformations in the active site of ribonuclease Sa2.
    Sevcík J; Dauter Z; Wilson KS
    Acta Crystallogr D Biol Crystallogr; 2004 Jul; 60(Pt 7):1198-204. PubMed ID: 15213380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen bonding markedly reduces the pK of buried carboxyl groups in proteins.
    Thurlkill RL; Grimsley GR; Scholtz JM; Pace CN
    J Mol Biol; 2006 Sep; 362(3):594-604. PubMed ID: 16934292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability.
    Chen J; Lu Z; Sakon J; Stites WE
    J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribonuclease Sa conformational stability studied by NMR-monitored hydrogen exchange.
    Laurents DV; Scholtz JM; Rico M; Pace CN; Bruix M
    Biochemistry; 2005 May; 44(21):7644-55. PubMed ID: 15909979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of single tryptophan residues to the fluorescence and stability of ribonuclease Sa.
    Alston RW; Urbanikova L; Sevcik J; Lasagna M; Reinhart GD; Scholtz JM; Pace CN
    Biophys J; 2004 Dec; 87(6):4036-47. PubMed ID: 15377518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mutational analysis of binding interactions in an antigen-antibody protein-protein complex.
    Dall'Acqua W; Goldman ER; Lin W; Teng C; Tsuchiya D; Li H; Ysern X; Braden BC; Li Y; Smith-Gill SJ; Mariuzza RA
    Biochemistry; 1998 Jun; 37(22):7981-91. PubMed ID: 9609690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical and molecular dynamics studies of buried waters in globular proteins.
    Park S; Saven JG
    Proteins; 2005 Aug; 60(3):450-63. PubMed ID: 15937899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic consequences of burial of polar and non-polar amino acid residues in the protein interior.
    Loladze VV; Ermolenko DN; Makhatadze GI
    J Mol Biol; 2002 Jul; 320(2):343-57. PubMed ID: 12079391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A C alpha-H...O hydrogen bond in a membrane protein is not stabilizing.
    Yohannan S; Faham S; Yang D; Grosfeld D; Chamberlain AK; Bowie JU
    J Am Chem Soc; 2004 Mar; 126(8):2284-5. PubMed ID: 14982414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of hydrogen bonds to protein stability.
    Pace CN; Fu H; Lee Fryar K; Landua J; Trevino SR; Schell D; Thurlkill RL; Imura S; Scholtz JM; Gajiwala K; Sevcik J; Urbanikova L; Myers JK; Takano K; Hebert EJ; Shirley BA; Grimsley GR
    Protein Sci; 2014 May; 23(5):652-61. PubMed ID: 24591301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of a single-turn alpha-helix to the conformational stability and activity of the alkaline proteinase inhibitor of Pseudomonas aeruginosa.
    Gray RD; Trent JO
    Biochemistry; 2005 Feb; 44(7):2469-77. PubMed ID: 15709759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.