These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11556728)

  • 21. Modeling deformation-induced fluid flow in cortical bone's canalicular-lacunar system.
    Gururaja S; Kim HJ; Swan CC; Brand RA; Lakes RS
    Ann Biomed Eng; 2005 Jan; 33(1):7-25. PubMed ID: 15709702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Modern poro-elastic biomechanical model of bone tissue. I. Biomechanical function of fluids in bone].
    Rogala P; Uklejewski R; Stryła W
    Chir Narzadow Ruchu Ortop Pol; 2002; 67(3):309-16. PubMed ID: 12238403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Could the intraosseous fluid in cancellous bone bear external load significantly within the elastic range?
    Hwa HJ
    Proc Inst Mech Eng H; 2004; 218(6):375-9. PubMed ID: 15648661
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Viscoelastic behaviour and failure of bovine cancellous bone under constant strain rate.
    Guedes RM; Simões JA; Morais JL
    J Biomech; 2006; 39(1):49-60. PubMed ID: 16271587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Viscoelastic properties of wet cortical bone--III. A non-linear constitutive equation.
    Lakes RS; Katz JL
    J Biomech; 1979; 12(9):689-98. PubMed ID: 489636
    [No Abstract]   [Full Text] [Related]  

  • 28. Estimation of the poroelastic parameters of cortical bone.
    Smit TH; Huyghe JM; Cowin SC
    J Biomech; 2002 Jun; 35(6):829-35. PubMed ID: 12021003
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Mechanical response numerical analysis of bone tissue based on liquid saturated biphasic porous medium model].
    Li D; Chen H; Wang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Jun; 21(3):381-6. PubMed ID: 15250138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon.
    Wu X; Wang N; Wang Z; Yu W; Wang Y; Guo Y; Chen W
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):149. PubMed ID: 28155688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses.
    Weinbaum S; Cowin SC; Zeng Y
    J Biomech; 1994 Mar; 27(3):339-60. PubMed ID: 8051194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Apparent viscoelastic anisotropy as measured from nondestructive oscillatory tests can reflect the presence of a flaw in cortical bone.
    Yeni YN; Christopherson GT; Turner AS; Les CM; Fyhrie DP
    J Biomed Mater Res A; 2004 Apr; 69(1):124-30. PubMed ID: 14999759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Poroelastic behaviour of cortical bone under harmonic axial loading: a finite element study at the osteonal scale.
    Nguyen VH; Lemaire T; Naili S
    Med Eng Phys; 2010 May; 32(4):384-90. PubMed ID: 20226715
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of dynamic mechanical analysis to assess the viscoelastic properties of human cortical bone.
    Yamashita J; Furman BR; Rawls HR; Wang X; Agrawal CM
    J Biomed Mater Res; 2001; 58(1):47-53. PubMed ID: 11152997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The origin of stress-generated potentials in fluid-saturated bone.
    Pienkowski D; Pollack SR
    J Orthop Res; 1983; 1(1):30-41. PubMed ID: 6679573
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic fluid flow induced mechanobiological modulation of in situ osteocyte calcium oscillations.
    Hu M; Tian GW; Gibbons DE; Jiao J; Qin YX
    Arch Biochem Biophys; 2015 Aug; 579():55-61. PubMed ID: 26045248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intraosseous pressure and strain generated potential of cylindrical bone samples in the drained uniaxial condition for various loading rates.
    Hong J; Ko SO; Khang G; Mun MS
    J Mater Sci Mater Med; 2008 Jul; 19(7):2589-94. PubMed ID: 17914630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comment on 'Some Viscoplastic Characteristics of Bovine and Human Cortical Bone'.
    Lakes RS
    J Biomech; 1989; 22(8-9):973-4. PubMed ID: 2613732
    [No Abstract]   [Full Text] [Related]  

  • 39. Analysis of avian bone response to mechanical loading-Part one: Distribution of bone fluid shear stress induced by bending and axial loading.
    Mi LY; Fritton SP; Basu M; Cowin SC
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):118-31. PubMed ID: 16254728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone strain sensation via transmembrane potential changes in surface osteoblasts: loading rate and microstructural implications.
    Harrigan TP; Hamilton JJ
    J Biomech; 1993 Feb; 26(2):183-200. PubMed ID: 8429060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.