BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11556733)

  • 1. Differences in respiratory parameters during continuous positive airway pressure and pressure support ventilation in infants and children.
    Hoshi K; Ejima Y; Hasegawa R; Saitoh K; Satoh S; Matsukawa S
    Tohoku J Exp Med; 2001 May; 194(1):45-54. PubMed ID: 11556733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of noninvasive positive pressure ventilatory support in non-COPD patients with acute respiratory insufficiency after early extubation.
    Kilger E; Briegel J; Haller M; Frey L; Schelling G; Stoll C; Pichler B; Peter K
    Intensive Care Med; 1999 Dec; 25(12):1374-80. PubMed ID: 10660844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Two Levels of Pressure Support Ventilation on Success of Extubation in Preterm Neonates: A Randomized Clinical Trial.
    Farhadi R; Lotfi HR; Alipour A; Nakhshab M; Ghaffari V; Hashemi SA
    Glob J Health Sci; 2015 Jun; 8(2):240-7. PubMed ID: 26383214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurally Adjusted Ventilatory Assist (NAVA) or Pressure Support Ventilation (PSV) during spontaneous breathing trials in critically ill patients: a crossover trial.
    Ferreira JC; Diniz-Silva F; Moriya HT; Alencar AM; Amato MBP; Carvalho CRR
    BMC Pulm Med; 2017 Nov; 17(1):139. PubMed ID: 29115949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictors of extubation success and failure in mechanically ventilated infants and children.
    Khan N; Brown A; Venkataraman ST
    Crit Care Med; 1996 Sep; 24(9):1568-79. PubMed ID: 8797633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compliance of the respiratory system as a predictor for successful extubation in very-low-birth-weight infants recovering from respiratory distress syndrome.
    Smith J; Pieper CH; Maree D; Gie RP
    S Afr Med J; 1999 Oct; 89(10):1097-102. PubMed ID: 10582068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure support ventilation versus continuous positive airway pressure ventilation with the ProSeal laryngeal mask airway: a randomized crossover study of anesthetized pediatric patients.
    von Goedecke A; Brimacombe J; Hörmann C; Jeske H-; Kleinsasser A; Keller C
    Anesth Analg; 2005 Feb; 100(2):357-360. PubMed ID: 15673856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pressure support ventilation and positive end expiratory pressure on the rapid shallow breathing index in intensive care unit patients.
    El-Khatib MF; Zeineldine SM; Jamaleddine GW
    Intensive Care Med; 2008 Mar; 34(3):505-10. PubMed ID: 18060662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation.
    Lemyre B; Davis PG; De Paoli AG; Kirpalani H
    Cochrane Database Syst Rev; 2014 Sep; (9):CD003212. PubMed ID: 25188554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure support ventilation versus continuous positive airway pressure with the laryngeal mask airway: a randomized crossover study of anesthetized adult patients.
    Brimacombe J; Keller C; Hörmann C
    Anesthesiology; 2000 Jun; 92(6):1621-3. PubMed ID: 10839911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of underwater bubble continuous positive airway pressure with ventilator-derived continuous positive airway pressure in premature neonates ready for extubation.
    Lee KS; Dunn MS; Fenwick M; Shennan AT
    Biol Neonate; 1998; 73(2):69-75. PubMed ID: 9483299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous breathing trial and post-extubation work of breathing in morbidly obese critically ill patients.
    Mahul M; Jung B; Galia F; Molinari N; de Jong A; Coisel Y; Vaschetto R; Matecki S; Chanques G; Brochard L; Jaber S
    Crit Care; 2016 Oct; 20(1):346. PubMed ID: 27784322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic versus manual pressure support reduction in the weaning of post-operative patients: a randomised controlled trial.
    Taniguchi C; Eid RC; Saghabi C; Souza R; Silva E; Knobel E; Paes AT; Barbas CS
    Crit Care; 2009; 13(1):R6. PubMed ID: 19171056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of neurally adjusted ventilatory assist on trigger of mechanical ventilation in acute exacerbation of chronic obstructive pulmonary disease patients with intrinsic positive end-expiratory pressure].
    Xu XT; Sun Q; Xie JF; Pan C; Yang Y; Qiu HB; Liu L
    Zhonghua Nei Ke Za Zhi; 2019 Jan; 58(1):43-48. PubMed ID: 30605950
    [No Abstract]   [Full Text] [Related]  

  • 15. Validation of predictors of extubation success and failure in mechanically ventilated infants and children.
    Venkataraman ST; Khan N; Brown A
    Crit Care Med; 2000 Aug; 28(8):2991-6. PubMed ID: 10966284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pressure support ventilation and continuous positive airway pressure on diaphragm performance.
    Isaacson J; Smith-Blair N; Clancy RL; Pierce JD
    J Adv Nurs; 2000 Dec; 32(6):1442-9. PubMed ID: 11136412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparisons of predictive performance of breathing pattern variability measured during T-piece, automatic tube compensation, and pressure support ventilation for weaning intensive care unit patients from mechanical ventilation.
    Bien MY; Shui Lin Y; Shih CH; Yang YL; Lin HW; Bai KJ; Wang JH; Ru Kou Y
    Crit Care Med; 2011 Oct; 39(10):2253-62. PubMed ID: 21666447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pressure support ventilation on ventilator-induced lung injury in mild acute respiratory distress syndrome depend on level of positive end-expiratory pressure: A randomised animal study.
    Magalhães PAF; Padilha GA; Moraes L; Santos CL; Maia LA; Braga CL; Duarte MDCMB; Andrade LB; Schanaider A; Capellozzi VL; Huhle R; Gama de Abreu M; Pelosi P; Rocco PRM; Silva PL
    Eur J Anaesthesiol; 2018 Apr; 35(4):298-306. PubMed ID: 29324568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiologic effects of transtracheal open ventilation in postextubation patients with high upper airway resistance.
    Uchiyama A; Mori T; Imanaka H; Nishimura M
    Crit Care Med; 2001 Sep; 29(9):1694-700. PubMed ID: 11546967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A randomised controlled trial of two methods of delivering nasal continuous positive airway pressure after extubation to infants weighing less than 1000 g: binasal (Hudson) versus single nasal prongs.
    Davis P; Davies M; Faber B
    Arch Dis Child Fetal Neonatal Ed; 2001 Sep; 85(2):F82-5. PubMed ID: 11517198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.