BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 11557551)

  • 1. Acute hibernation decreases myocardial pyruvate carboxylation and citrate release.
    Panchal AR; Comte B; Huang H; Dudar B; Roth B; Chandler M; Des Rosiers C; Brunengraber H; Stanley WC
    Am J Physiol Heart Circ Physiol; 2001 Oct; 281(4):H1613-20. PubMed ID: 11557551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partitioning of pyruvate between oxidation and anaplerosis in swine hearts.
    Panchal AR; Comte B; Huang H; Kerwin T; Darvish A; des Rosiers C; Brunengraber H; Stanley WC
    Am J Physiol Heart Circ Physiol; 2000 Nov; 279(5):H2390-8. PubMed ID: 11045976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 13C mass isotopomer study of anaplerotic pyruvate carboxylation in perfused rat hearts.
    Comte B; Vincent G; Bouchard B; Jetté M; Cordeau S; Rosiers CD
    J Biol Chem; 1997 Oct; 272(42):26125-31. PubMed ID: 9334177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triiodothyronine increases myocardial function and pyruvate entry into the citric acid cycle after reperfusion in a model of infant cardiopulmonary bypass.
    Olson AK; Bouchard B; Ning XH; Isern N; Rosiers CD; Portman MA
    Am J Physiol Heart Circ Physiol; 2012 Mar; 302(5):H1086-93. PubMed ID: 22180654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic phenotyping of the diseased rat heart using 13C-substrates and ex vivo perfusion in the working mode.
    Vincent G; Khairallah M; Bouchard B; Des Rosiers C
    Mol Cell Biochem; 2003 Jan; 242(1-2):89-99. PubMed ID: 12619870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing pyruvate metabolism in normal and mutant fibroblast cell lines using 13C-labeled mass isotopomer analysis and mass spectrometry.
    Riazi R; Khairallah M; Cameron JM; Pencharz PB; Des Rosiers C; Robinson BH
    Mol Genet Metab; 2009 Dec; 98(4):349-55. PubMed ID: 19640754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. beta-Cell adaptation to insulin resistance. Increased pyruvate carboxylase and malate-pyruvate shuttle activity in islets of nondiabetic Zucker fatty rats.
    Liu YQ; Jetton TL; Leahy JL
    J Biol Chem; 2002 Oct; 277(42):39163-8. PubMed ID: 12147706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxylation and decarboxylation reactions. Anaplerotic flux and removal of citrate cycle intermediates in skeletal muscle.
    Lee SH; Davis EJ
    J Biol Chem; 1979 Jan; 254(2):420-30. PubMed ID: 762069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carboxylation and anaplerosis in neurons and glia.
    Hassel B
    Mol Neurobiol; 2000; 22(1-3):21-40. PubMed ID: 11414279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superior cardiac function via anaplerotic pyruvate in the immature swine heart after cardiopulmonary bypass and reperfusion.
    Olson AK; Hyyti OM; Cohen GA; Ning XH; Sadilek M; Isern N; Portman MA
    Am J Physiol Heart Circ Physiol; 2008 Dec; 295(6):H2315-20. PubMed ID: 18849332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyruvate carboxylation in the rat heart. Role of biotin-dependent enzymes.
    Sundqvist KE; Hiltunen JK; Hassinen IE
    Biochem J; 1989 Feb; 257(3):913-6. PubMed ID: 2930495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyruvate carboxylation as an anaplerotic mechanism in the isolated perfused rat heart.
    Peuhkurinen KJ; Hassinen IE
    Biochem J; 1982 Jan; 202(1):67-76. PubMed ID: 7082318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dipropionylcysteine ethyl ester compensates for loss of citric acid cycle intermediates during post ischemia reperfusion in the pig heart.
    Kasumov T; Sharma N; Huang H; Kombu RS; Cendrowski A; Stanley WC; Brunengraber H
    Cardiovasc Drugs Ther; 2009 Dec; 23(6):459-69. PubMed ID: 19967553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced rat beta-cell proliferation in 60% pancreatectomized islets by increased glucose metabolic flux through pyruvate carboxylase pathway.
    Liu YQ; Han J; Epstein PN; Long YS
    Am J Physiol Endocrinol Metab; 2005 Mar; 288(3):E471-8. PubMed ID: 15507531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential modulation of citrate synthesis and release by fatty acids in perfused working rat hearts.
    Vincent G; Bouchard B; Khairallah M; Des Rosiers C
    Am J Physiol Heart Circ Physiol; 2004 Jan; 286(1):H257-66. PubMed ID: 12933348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple compartments with different metabolic characteristics are involved in biosynthesis of intracellular and released glutamine and citrate in astrocytes.
    Waagepetersen HS; Sonnewald U; Larsson OM; Schousboe A
    Glia; 2001 Sep; 35(3):246-52. PubMed ID: 11494415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The citrate cleavage pathway and lipogenesis in rat adipose tissue: replenishment of oxaloacetate.
    Ballard FJ; Hanson RW
    J Lipid Res; 1967 Mar; 8(2):73-9. PubMed ID: 14564711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential contribution of pyruvate carboxylation to anaplerosis and cataplerosis during non-gluconeogenic and gluconeogenic conditions in HepG2 cells.
    Wattanavanitchakorn S; Ansari IH; El Azzouny M; Longacre MJ; Stoker SW; MacDonald MJ; Jitrapakdee S
    Arch Biochem Biophys; 2019 Nov; 676():108124. PubMed ID: 31585072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyruvate carboxylation in neurons.
    Hassel B
    J Neurosci Res; 2001 Dec; 66(5):755-62. PubMed ID: 11746399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of heptanoate and hexanoate on myocardial citric acid cycle intermediates following ischemia-reperfusion.
    Okere IC; McElfresh TA; Brunengraber DZ; Martini W; Sterk JP; Huang H; Chandler MP; Brunengraber H; Stanley WC
    J Appl Physiol (1985); 2006 Jan; 100(1):76-82. PubMed ID: 16141384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.