These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 11558300)

  • 1. Lead and zinc removal by laboratory-scale constructed wetlands.
    Song Y; Fitch M; Burken J; Nass L; Chilukiri S; Gale N; Ross C
    Water Environ Res; 2001; 73(1):37-44. PubMed ID: 11558300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term efficiency and stability of wetlands for treating wastewater of a lead/zinc mine and the concurrent ecosystem development.
    Yang B; Lan CY; Yang CS; Liao WB; Chang H; Shu WS
    Environ Pollut; 2006 Oct; 143(3):499-512. PubMed ID: 16469422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing phosphorus removal in constructed wetlands with ochre from mine drainage treatment.
    Heal KV; Dobbie KE; Bozika E; McHaffie H; Simpson AE; Smith KA
    Water Sci Technol; 2005; 51(9):275-82. PubMed ID: 16042268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal removal efficiency and ecotoxicological assessment of field-scale passive treatment biochemical reactors.
    Butler BA; Smith ME; Reisman DJ; Lazorchak JM
    Environ Toxicol Chem; 2011 Feb; 30(2):385-92. PubMed ID: 21072838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland.
    Liu J; Dong Y; Xu H; Wang D; Xu J
    J Hazard Mater; 2007 Aug; 147(3):947-53. PubMed ID: 17353090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of toxicity reduction in wastewater effluent flowing through a treatment wetland using Pimephales promelas, Ceriodaphnia dubia, and Vibrio fischeri.
    Hemming JM; Turner PK; Brooks BW; Waller WT; La Point TW
    Arch Environ Contam Toxicol; 2002 Jan; 42(1):9-16. PubMed ID: 11706362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial and nutrient investigations into the use of in situ layers for treatment of tailings effluent.
    Hulshof AH; Blowes DW; Ptacek CJ; Gould WD
    Environ Sci Technol; 2003 Nov; 37(21):5027-33. PubMed ID: 14620834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the efficiency of toxicity abatement in a constructed wetland with Ceriodaphnia dubia.
    Belin JI; McCaskey TA; Black MC
    J Toxicol Environ Health A; 2000 May; 60(2):137-51. PubMed ID: 10872634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic wetland treatment of sewage and mine water: pollutant removal performance of the first full-scale system.
    Younger PL; Henderson R
    Water Res; 2014 May; 55():74-82. PubMed ID: 24602862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of ammonia-rich minewater in constructed wetlands.
    Demin OA; Dudeney AW; Tarasova II
    Environ Technol; 2002 May; 23(5):497-514. PubMed ID: 12090256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal influence on sulfate reduction and zinc sequestration in subsurface treatment wetlands.
    Stein OR; Borden-Stewart DJ; Hook PB; Jones WL
    Water Res; 2007 Aug; 41(15):3440-8. PubMed ID: 17599383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency of removal of nitrogen, phosphorus, and zinc from domestic wastewater by a constructed wetland system in rural areas: a case study.
    Abe K; Komada M; Ookuma A
    Water Sci Technol; 2008; 58(12):2427-33. PubMed ID: 19092222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity and metal speciation in acid mine drainage treated by passive bioreactors.
    Neculita CM; Vigneault B; Zagury GJ
    Environ Toxicol Chem; 2008 Aug; 27(8):1659-67. PubMed ID: 18290688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea.
    Lee JY; Choi JC; Lee KK
    Environ Geochem Health; 2005 Sep; 27(3):237-57. PubMed ID: 16059780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfers and transformations of zinc in flow-through wetland microcosms.
    Gillespie WB; Hawkins WB; Rodgers JH; Cano ML; Dorn PB
    Ecotoxicol Environ Saf; 1999 Jun; 43(2):126-32. PubMed ID: 10375414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Denitrification in free water surface wetlands receiving carbon supplements.
    Burgoon PS
    Water Sci Technol; 2001; 44(11-12):163-9. PubMed ID: 11804089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using constructed wetlands to treat biochemical oxygen demand and ammonia associated with a refinery effluent.
    Huddleston GM; Gillespie WB; Rodgers JH
    Ecotoxicol Environ Saf; 2000 Feb; 45(2):188-93. PubMed ID: 10648135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of design and operation parameters on volatile alkylsulfides removal in subsurface constructed wetlands].
    Feng L; Gan L; Wang HJ; Mo P; Huang YM
    Huan Jing Ke Xue; 2010 Feb; 31(2):345-51. PubMed ID: 20391700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of vegetation (Typha latifolia) on nutrient removal in a horizontal subsurface-flow constructed wetland treating UASB reactor-trickling filter effluent.
    da Costa JF; Martins WL; Seidl M; von Sperling M
    Water Sci Technol; 2015; 71(7):1004-10. PubMed ID: 25860702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective treatment of acid mine drainage using a combination of MgO-nanoparticles and a series of constructed wetlands planted with Vetiveria zizanioides: A hybrid and stepwise approach.
    Nguegang B; Masindi V; Msagati Makudali TA; Tekere M
    J Environ Manage; 2022 May; 310():114751. PubMed ID: 35220100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.