These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 11558324)
1. Cryopreservation of Rh negative blood for improved storage & utilisation by means of indigenous freezing bags & solutions & manual deglycerolisation. Nanu A; Lal M Indian J Med Res; 2001 Apr; 113():151-5. PubMed ID: 11558324 [TBL] [Abstract][Full Text] [Related]
2. Effects of the temperature, the duration of frozen storage, and the freezing container on in vitro measurements in human peripheral blood mononuclear cells. Valeri CR; Pivacek LE Transfusion; 1996 Apr; 36(4):303-8. PubMed ID: 8623128 [TBL] [Abstract][Full Text] [Related]
3. Automation of the glycerolization of red blood cells with the high-separation bowl in the Haemonetics ACP 215 instrument. Valeri CR; Ragno G; Van Houten P; Rose L; Rose M; Egozy Y; Popovsky MA Transfusion; 2005 Oct; 45(10):1621-7. PubMed ID: 16181213 [TBL] [Abstract][Full Text] [Related]
4. Long-term storage of peripheral blood stem cells frozen and stored with a conventional liquid nitrogen technique compared with cells frozen and stored in a mechanical freezer. McCullough J; Haley R; Clay M; Hubel A; Lindgren B; Moroff G Transfusion; 2010 Apr; 50(4):808-19. PubMed ID: 19912586 [TBL] [Abstract][Full Text] [Related]
5. Transfusion of rare cryopreserved red blood cell units stored at -80 degrees C: the French experience. Peyrard T; Pham BN; Le Pennec PY; Rouger P Immunohematology; 2009; 25(1):13-7. PubMed ID: 19856727 [TBL] [Abstract][Full Text] [Related]
6. The in vitro quality of red blood cells frozen with 40 percent (wt/vol) glycerol at -80 degrees C for 14 years, deglycerolized with the Haemonetics ACP 215, and stored at 4 degrees C in additive solution-1 or additive solution-3 for up to 3 weeks. Valeri CR; Srey R; Tilahun D; Ragno G Transfusion; 2004 Jul; 44(7):990-5. PubMed ID: 15225238 [TBL] [Abstract][Full Text] [Related]
7. Prolonged post-thaw shelf life of red cells frozen without prefreeze removal of excess glycerol. Lelkens CC; de Korte D; Lagerberg JW Vox Sang; 2015 Apr; 108(3):219-25. PubMed ID: 25471217 [TBL] [Abstract][Full Text] [Related]
8. Net haemoglobin increase from reinfusion of refrigerated vs. frozen red blood cells after autologous blood transfusions. Ashenden M; Mørkeberg J Vox Sang; 2011 Nov; 101(4):320-6. PubMed ID: 21534982 [TBL] [Abstract][Full Text] [Related]
9. Synergistic effects of liposomes, trehalose, and hydroxyethyl starch for cryopreservation of human erythrocytes. Stoll C; Holovati JL; Acker JP; Wolkers WF Biotechnol Prog; 2012; 28(2):364-71. PubMed ID: 22275294 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of red blood cells stored at -80 degrees C in excess of 10 years. Lecak J; Scott K; Young C; Hannon J; Acker JP Transfusion; 2004 Sep; 44(9):1306-13. PubMed ID: 15318853 [TBL] [Abstract][Full Text] [Related]
11. Salvaging of liquid-preserved O-positive and O-negative red blood cells by rejuvenation and freezing. Ragno G; Robert Valeri C Transfus Apher Sci; 2006 Oct; 35(2):137-43. PubMed ID: 17035090 [TBL] [Abstract][Full Text] [Related]
12. The effects of cryopreservation on red blood cell microvesiculation, phosphatidylserine externalization, and CD47 expression. Holovati JL; Wong KA; Webster JM; Acker JP Transfusion; 2008 Aug; 48(8):1658-68. PubMed ID: 18482179 [TBL] [Abstract][Full Text] [Related]
13. Successful in vivo recovery and extended storage of additive solution (AS)-5 red blood cells after deglycerolization and resuspension in AS-3 for 15 days with an automated closed system. Bandarenko N; Cancelas J; Snyder EL; Hay SN; Rugg N; Corda T; Joines AD; Gormas JF; Pratt GP; Kowalsky R; Rose M; Rose L; Foley J; Popovsky MA Transfusion; 2007 Apr; 47(4):680-6. PubMed ID: 17381627 [TBL] [Abstract][Full Text] [Related]
14. Altered processing of thawed red cells to improve the in vitro quality during postthaw storage at 4 degrees C. Lagerberg JW; Truijens-de Lange R; de Korte D; Verhoeven AJ Transfusion; 2007 Dec; 47(12):2242-9. PubMed ID: 17714415 [TBL] [Abstract][Full Text] [Related]
15. Red cell freezing and its impact on the supply chain. Hess JR Transfus Med; 2004 Feb; 14(1):1-8. PubMed ID: 15043586 [TBL] [Abstract][Full Text] [Related]
16. Incidence of breakage of human RBCs frozen with 40-percent wt/vol glycerol using two different methods for storage at -80 degrees C. Valeri CR; Lane JP; Srey R; Ragno G Transfusion; 2003 Mar; 43(3):411-4. PubMed ID: 12675730 [TBL] [Abstract][Full Text] [Related]
17. Effect of cryopreservation on a rare McLeod donor red blood cell concentrate. Turner TR; Clarke G; Denomme GA; Skeate R; Acker JP Immunohematology; 2021 Jun; 37(2):78-83. PubMed ID: 34170642 [TBL] [Abstract][Full Text] [Related]
18. [Usefulness of frozen-thawed-deglycerolized red blood cells as quality control materials for red blood cell deformability test]. Kim YK; Won DI; Kim HO; Shin S; Suh JS Korean J Lab Med; 2010 Dec; 30(6):697-701. PubMed ID: 21157158 [TBL] [Abstract][Full Text] [Related]
19. A new freezing and storage procedure improves safety and viability of haematopoietic stem cells and neutrophil engraftment: a single institution experience. Abbruzzese L; Michieli M; Rupolo M; Toffola RT; Da Ponte A; Rossi FM; Lorenzon D; Simonelli C; Gattei V; De Marco L; Mazzucato M Vox Sang; 2010 Feb; 98(2):172-80. PubMed ID: 19695012 [TBL] [Abstract][Full Text] [Related]
20. Primitive hematopoietic progenitors within mobilized blood are spared by uncontrolled rate freezing. Cilloni D; Garau D; Regazzi E; Sammarelli G; Savoldo B; Caramatti C; Mangoni L; Rizzoli V; Carlo-Stella C Bone Marrow Transplant; 1999 Mar; 23(5):497-503. PubMed ID: 10100565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]