These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 11558807)
21. Diffuse glaucomatous structural and functional damage in the hemifield without significant pattern loss. Grewal DS; Sehi M; Greenfield DS Arch Ophthalmol; 2009 Nov; 127(11):1442-8. PubMed ID: 19901209 [TBL] [Abstract][Full Text] [Related]
22. Combined evaluation of frequency doubling technology perimetry and scanning laser ophthalmoscopy for glaucoma detection using automated classification. Horn FK; Lämmer R; Mardin CY; Jünemann AG; Michelson G; Lausen B; Adler W J Glaucoma; 2012 Jan; 21(1):27-34. PubMed ID: 21173705 [TBL] [Abstract][Full Text] [Related]
23. Test-retest variability of frequency-doubling perimetry and conventional perimetry in glaucoma patients and normal subjects. Chauhan BC; Johnson CA Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):648-56. PubMed ID: 10067968 [TBL] [Abstract][Full Text] [Related]
24. Frequency doubling technology and high-pass resolution perimetry in glaucoma and ocular hypertension. Kalaboukhova L; Lindblom B Acta Ophthalmol Scand; 2003 Jun; 81(3):247-52. PubMed ID: 12780403 [TBL] [Abstract][Full Text] [Related]
25. Preperimetric glaucoma diagnosis by confocal scanning laser tomography of the optic disc. Mardin CY; Horn FK; Jonas JB; Budde WM Br J Ophthalmol; 1999 Mar; 83(3):299-304. PubMed ID: 10365037 [TBL] [Abstract][Full Text] [Related]
26. Short wavelength automated perimetry, frequency doubling technology perimetry, and pattern electroretinography for prediction of progressive glaucomatous standard visual field defects. Bayer AU; Erb C Ophthalmology; 2002 May; 109(5):1009-17. PubMed ID: 11986111 [TBL] [Abstract][Full Text] [Related]
27. Comparison of frequency doubling perimetry with humphrey visual field analysis in a glaucoma practice. Burnstein Y; Ellish NJ; Magbalon M; Higginbotham EJ Am J Ophthalmol; 2000 Mar; 129(3):328-33. PubMed ID: 10704548 [TBL] [Abstract][Full Text] [Related]
28. Prediction of visual field defects on standard automated perimetry by screening C-20-1 frequency doubling technology perimetry. Kamantigue ME; Joson PJ; Chen PP J Glaucoma; 2006 Feb; 15(1):35-9. PubMed ID: 16378016 [TBL] [Abstract][Full Text] [Related]
29. A frequency-doubling perimetric study in normal-tension glaucoma with hemifield defect. Kondo Y; Yamamoto T; Sato Y; Matsubara M; Kitazawa Y J Glaucoma; 1998 Aug; 7(4):261-5. PubMed ID: 9713784 [TBL] [Abstract][Full Text] [Related]
30. [Sector-based analysis of the distribution of the neuroretinal rim by confocal scanning laser in the diagnosis of glaucoma]. Pueyo V; Larrosa JM; Polo V; Pérez-Iñigo A; Ferreras A; Honrubia FM Arch Soc Esp Oftalmol; 2006 Mar; 81(3):135-40. PubMed ID: 16572356 [TBL] [Abstract][Full Text] [Related]
31. [Specifity of optic disc evaluation in healthy subjects with large optic discs and physiologic cupping using confocal scanning laser ophthalmoscopy]. Plange N; Hirsch T; Bienert M; Remky A Klin Monbl Augenheilkd; 2014 Feb; 231(2):164-9. PubMed ID: 23775290 [TBL] [Abstract][Full Text] [Related]
32. Identifying early glaucomatous changes. Comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy. Wollstein G; Garway-Heath DF; Fontana L; Hitchings RA Ophthalmology; 2000 Dec; 107(12):2272-7. PubMed ID: 11097609 [TBL] [Abstract][Full Text] [Related]
33. Relationship between optic nerve head parameters of Heidelberg Retina Tomograph and visual field defects in primary open-angle glaucoma. Lee KH; Park KH; Kim DM; Youn DH Korean J Ophthalmol; 1996 Jun; 10(1):24-8. PubMed ID: 8755198 [TBL] [Abstract][Full Text] [Related]
34. Is the ISNT rule violated in early primary open-angle glaucoma--a scanning laser tomography study. Sihota R; Srinivasan G; Dada T; Gupta V; Ghate D; Sharma A Eye (Lond); 2008 Jun; 22(6):819-24. PubMed ID: 17435693 [TBL] [Abstract][Full Text] [Related]
35. Relationship between structural abnormalities and short-wavelength perimetric defects in eyes at risk of glaucoma. Ugurlu S; Hoffman D; Garway-Heath DF; Caprioli J Am J Ophthalmol; 2000 May; 129(5):592-8. PubMed ID: 10844049 [TBL] [Abstract][Full Text] [Related]
36. Frequency-doubling threshold perimetry in predicting glaucoma in a population-based study: The Beijing Eye Study. Wang YX; Xu L; Zhang RX; Jonas JB Arch Ophthalmol; 2007 Oct; 125(10):1402-6. PubMed ID: 17923550 [TBL] [Abstract][Full Text] [Related]
37. Sector-based analysis of frequency doubling technology sensitivity and optic nerve head shape parameters. Iester M; Sangermani C; De Feo F; Ungaro N; Cicinelli S; Tardini MG; Calabria G; Gandolfi S Eur J Ophthalmol; 2007; 17(2):223-9. PubMed ID: 17415696 [TBL] [Abstract][Full Text] [Related]
38. Rates of change in the visual field and optic disc in patients with distinct patterns of glaucomatous optic disc damage. Reis AS; Artes PH; Belliveau AC; Leblanc RP; Shuba LM; Chauhan BC; Nicolela MT Ophthalmology; 2012 Feb; 119(2):294-303. PubMed ID: 22133797 [TBL] [Abstract][Full Text] [Related]
39. Validity of screening for glaucomatous optic nerve damage using confocal scanning laser ophthalmoscopy (Heidelberg Retina Tomograph II) in high-risk populations: a pilot study. Harasymowycz PJ; Papamatheakis DG; Fansi AK; Gresset J; Lesk MR Ophthalmology; 2005 Dec; 112(12):2164-71. PubMed ID: 16325710 [TBL] [Abstract][Full Text] [Related]
40. Correlation analysis of visual field thresholds and scanning laser ophthalmoscopic optic nerve head measurements in glaucoma. Gulati V; Agarwal HC; Sihota R; Saxena R Ophthalmic Physiol Opt; 2003 May; 23(3):233-42. PubMed ID: 12753479 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]