These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I. Carver TE; Millar DP Biochemistry; 1998 Feb; 37(7):1898-904. PubMed ID: 9485315 [TBL] [Abstract][Full Text] [Related]
3. Effects of mutations on the partitioning of DNA substrates between the polymerase and 3'-5' exonuclease sites of DNA polymerase I (Klenow fragment). Lam WC; Van der Schans EJ; Joyce CM; Millar DP Biochemistry; 1998 Feb; 37(6):1513-22. PubMed ID: 9484221 [TBL] [Abstract][Full Text] [Related]
4. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase. Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720 [TBL] [Abstract][Full Text] [Related]
5. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding. Bailey MF; Van der Schans EJ; Millar DP Biochemistry; 2007 Jul; 46(27):8085-99. PubMed ID: 17567151 [TBL] [Abstract][Full Text] [Related]
6. Interaction of DNA polymerase I (Klenow fragment) with DNA substrates containing extrahelical bases: implications for proofreading of frameshift errors during DNA synthesis. Lam WC; Van der Schans EJ; Sowers LC; Millar DP Biochemistry; 1999 Mar; 38(9):2661-8. PubMed ID: 10052936 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamic dissection of the polymerizing and editing modes of a DNA polymerase. Bailey MF; van der Schans EJ; Millar DP J Mol Biol; 2004 Feb; 336(3):673-93. PubMed ID: 15095980 [TBL] [Abstract][Full Text] [Related]
8. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch. Singh K; Modak MJ Biochemistry; 2005 Jun; 44(22):8101-10. PubMed ID: 15924429 [TBL] [Abstract][Full Text] [Related]
9. Interaction of DNA with the Klenow fragment of DNA polymerase I studied by time-resolved fluorescence spectroscopy. Guest CR; Hochstrasser RA; Dupuy CG; Allen DJ; Benkovic SJ; Millar DP Biochemistry; 1991 Sep; 30(36):8759-70. PubMed ID: 1888736 [TBL] [Abstract][Full Text] [Related]
10. Fidelity of mispair formation and mispair extension is dependent on the interaction between the minor groove of the primer terminus and Arg668 of DNA polymerase I of Escherichia coli. McCain MD; Meyer AS; Schultz SS; Glekas A; Spratt TE Biochemistry; 2005 Apr; 44(15):5647-59. PubMed ID: 15823023 [TBL] [Abstract][Full Text] [Related]
11. Proofreading DNA: recognition of aberrant DNA termini by the Klenow fragment of DNA polymerase I. Carver TE; Hochstrasser RA; Millar DP Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10670-4. PubMed ID: 7938011 [TBL] [Abstract][Full Text] [Related]
12. DNA polymerase photoprobe 2-[(4-azidophenacyl)thio]-2'-deoxyadenosine 5'-triphosphate labels an Escherichia coli DNA polymerase I Klenow fragment substrate binding site. Moore BM; Jalluri RK; Doughty MB Biochemistry; 1996 Sep; 35(36):11642-51. PubMed ID: 8794744 [TBL] [Abstract][Full Text] [Related]
13. Probing DNA polymerase-DNA interactions: examining the template strand in exonuclease complexes using 2-aminopurine fluorescence and acrylamide quenching. Tleugabulova D; Reha-Krantz LJ Biochemistry; 2007 Jun; 46(22):6559-69. PubMed ID: 17497891 [TBL] [Abstract][Full Text] [Related]
14. RecA interacts with Klenow and enhances fidelity of DNA synthesis in vitro. Karthikeyan G; Lakshmikant GS; Wagle MD; Krishnamoorthy G; Rao BJ J Mol Microbiol Biotechnol; 1999 Aug; 1(1):149-56. PubMed ID: 10941797 [TBL] [Abstract][Full Text] [Related]
15. Mechanistic insights into replication across from bulky DNA adducts: a mutant polymerase I allows an N-acetyl-2-aminofluorene adduct to be accommodated during DNA synthesis. Lone S; Romano LJ Biochemistry; 2003 Apr; 42(13):3826-34. PubMed ID: 12667073 [TBL] [Abstract][Full Text] [Related]
16. Spectroscopic studies on human serum albumin and methemalbumin: optical, steady-state, and picosecond time-resolved fluorescence studies, and kinetics of substrate oxidation by methemalbumin. Kamal JK; Behere DV J Biol Inorg Chem; 2002 Mar; 7(3):273-83. PubMed ID: 11935351 [TBL] [Abstract][Full Text] [Related]
17. Use of fluorescence resonance energy transfer to investigate the conformation of DNA substrates bound to the Klenow fragment. Furey WS; Joyce CM; Osborne MA; Klenerman D; Peliska JA; Balasubramanian S Biochemistry; 1998 Mar; 37(9):2979-90. PubMed ID: 9485450 [TBL] [Abstract][Full Text] [Related]
18. Melting of a DNA helix terminus within the active site of a DNA polymerase. Hochstrasser RA; Carver TE; Sowers LC; Millar DP Biochemistry; 1994 Oct; 33(39):11971-9. PubMed ID: 7918416 [TBL] [Abstract][Full Text] [Related]
19. Conformational changes during normal and error-prone incorporation of nucleotides by a Y-family DNA polymerase detected by 2-aminopurine fluorescence. DeLucia AM; Grindley ND; Joyce CM Biochemistry; 2007 Sep; 46(38):10790-803. PubMed ID: 17725324 [TBL] [Abstract][Full Text] [Related]
20. Analysis of DNA polymerase activity in vitro using non-radioactive primer extension assay in an automated DNA sequencer. Lopes DO; Regis-da-Silva CG; Machado-Silva A; Macedo AM; Franco GR; Hoffmann JS; Cazaux C; Pena SD; Teixeira SM; Machado CR Genet Mol Res; 2007 May; 6(2):250-5. PubMed ID: 17573654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]