BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 11559049)

  • 1. Aerobic oxidation of aminoacetone, a threonine catabolite: iron catalysis and coupled iron release from ferritin.
    Dutra F; Knudsen FS; Curi D; Bechara EJ
    Chem Res Toxicol; 2001 Sep; 14(9):1323-9. PubMed ID: 11559049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aminoacetone induces loss of ferritin ferroxidase and iron uptake activities.
    Dutra F; Araki D; Bechara EJ
    Free Radic Res; 2003 Oct; 37(10):1113-21. PubMed ID: 14703801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferricytochrome (c) directly oxidizes aminoacetone to methylglyoxal, a catabolite accumulated in carbonyl stress.
    Sartori A; Mano CM; Mantovani MC; Dyszy FH; Massari J; Tokikawa R; Nascimento OR; Nantes IL; Bechara EJ
    PLoS One; 2013; 8(3):e57790. PubMed ID: 23483930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quinolinic acid-iron(ii) complexes: slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction.
    Pláteník J; Stopka P; Vejrazka M; Stípek S
    Free Radic Res; 2001 May; 34(5):445-59. PubMed ID: 11378528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide dismutase-like activities of copper(II) complexes tested in serum.
    Huber KR; Sridhar R; Griffith EH; Amma EL; Roberts J
    Biochim Biophys Acta; 1987 Sep; 915(2):267-76. PubMed ID: 2820500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1,4-Diamino-2-butanone, a wide-spectrum microbicide, yields reactive species by metal-catalyzed oxidation.
    Soares CO; Alves MJ; Bechara EJ
    Free Radic Biol Med; 2011 Jun; 50(12):1760-70. PubMed ID: 21466850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aminoacetone, a putative endogenous source of methylglyoxal, causes oxidative stress and death to insulin-producing RINm5f cells.
    Sartori A; Garay-Malpartida HM; Forni MF; Schumacher RI; Dutra F; Sogayar MC; Bechara EJ
    Chem Res Toxicol; 2008 Sep; 21(9):1841-50. PubMed ID: 18729331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aminoacetone induces iron-mediated oxidative damage to isolated rat liver mitochondria.
    Dutra F; Bechara EJ
    Arch Biochem Biophys; 2004 Oct; 430(2):284-9. PubMed ID: 15369828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction of the carbonate radical with the spin-trap 5,5-dimethyl-1-pyrroline-N-oxide in chemical and cellular systems: pulse radiolysis, electron paramagnetic resonance, and kinetic-competition studies.
    Alvarez MN; Peluffo G; Folkes L; Wardman P; Radi R
    Free Radic Biol Med; 2007 Dec; 43(11):1523-33. PubMed ID: 17964423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron(II) and hydrogen peroxide detoxification by human H-chain ferritin. An EPR spin-trapping study.
    Zhao G; Arosio P; Chasteen ND
    Biochemistry; 2006 Mar; 45(10):3429-36. PubMed ID: 16519538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin trapping endogenous radicals in MC-1010 cells: evidence for hydroxyl radical and carbon-centered ascorbyl radical adducts.
    Bernofsky C; Bandara BM
    Mol Cell Biochem; 1995 Jul; 148(2):155-64. PubMed ID: 8594420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of generation of oxygen radicals and reductive mobilization of ferritin iron by lipoamide dehydrogenase.
    Bando Y; Aki K
    J Biochem; 1991 Mar; 109(3):450-4. PubMed ID: 1652585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemistry of free radicals produced by oxidation of endogenous α-aminoketones. A study of 5-aminolevulinic acid and α-aminoacetone by fast kinetics spectroscopy.
    Morlière P; Hug GL; Patterson LK; Mazière JC; Ausseil J; Dupas JL; Ducroix JP; Santus R; Filipe P
    Biochim Biophys Acta; 2014 Oct; 1840(10):3190-7. PubMed ID: 25018004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dual face of endogenous alpha-aminoketones: pro-oxidizing metabolic weapons.
    Bechara EJH; Dutra F; Cardoso VES; Sartori A; Olympio KPK; Penatti CAA; Adhikari A; Assunção NA
    Comp Biochem Physiol C Toxicol Pharmacol; 2007; 146(1-2):88-110. PubMed ID: 16920403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen-derived free radical and active oxygen complex formation from cobalt(II) chelates in vitro.
    Hanna PM; Kadiiska MB; Mason RP
    Chem Res Toxicol; 1992; 5(1):109-15. PubMed ID: 1316186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerobic co-oxidation of hemoglobin and aminoacetone, a putative source of methylglyoxal.
    Ramos LD; Mantovani MC; Sartori A; Dutra F; Stevani CV; Bechara EJH
    Free Radic Biol Med; 2021 Apr; 166():178-186. PubMed ID: 33636334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of phosphate and an enoyl radical in ferritin iron mobilization by 5-aminolevulinic acid.
    Rocha ME; Ferreira AM; Bechara EJ
    Free Radic Biol Med; 2000 Dec; 29(12):1272-9. PubMed ID: 11118817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of H₂O₂ and generation of superoxide radical: role of cytochrome c and NADH.
    Velayutham M; Hemann C; Zweier JL
    Free Radic Biol Med; 2011 Jul; 51(1):160-70. PubMed ID: 21545835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of 5,5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction.
    Fontmorin JM; Burgos Castillo RC; Tang WZ; Sillanpää M
    Water Res; 2016 Aug; 99():24-32. PubMed ID: 27132196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct evidence for inhibition of free radical formation from Cu(I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping technique.
    Hanna PM; Mason RP
    Arch Biochem Biophys; 1992 May; 295(1):205-13. PubMed ID: 1315504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.