These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
438 related articles for article (PubMed ID: 11559738)
1. Protecting against water loss: analysis of the barrier properties of plant cuticles. Riederer M; Schreiber L J Exp Bot; 2001 Oct; 52(363):2023-32. PubMed ID: 11559738 [TBL] [Abstract][Full Text] [Related]
2. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Zeisler V; Schreiber L Planta; 2016 Jan; 243(1):65-81. PubMed ID: 26341347 [TBL] [Abstract][Full Text] [Related]
3. Water transport in plant cuticles: an update. Kerstiens G J Exp Bot; 2006; 57(11):2493-9. PubMed ID: 16822810 [TBL] [Abstract][Full Text] [Related]
4. Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. Schreiber L Ann Bot; 2005 Jun; 95(7):1069-73. PubMed ID: 15797897 [TBL] [Abstract][Full Text] [Related]
5. A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves. Santrůcek J; Simánová E; Karbulková J; Simková M; Schreiber L J Exp Bot; 2004 Jun; 55(401):1411-22. PubMed ID: 15155780 [TBL] [Abstract][Full Text] [Related]
6. Chemical composition and water permeability of the cuticular wax barrier in rose leaf and petal: A comparative investigation. Cheng G; Huang H; Zhou L; He S; Zhang Y; Cheng X Plant Physiol Biochem; 2019 Feb; 135():404-410. PubMed ID: 30635221 [TBL] [Abstract][Full Text] [Related]
7. Chemical Composition and Water Permeability of Fruit and Leaf Cuticles of Olea europaea L. Huang H; Burghardt M; Schuster AC; Leide J; Lara I; Riederer M J Agric Food Chem; 2017 Oct; 65(40):8790-8797. PubMed ID: 28880084 [TBL] [Abstract][Full Text] [Related]
8. Effect of humidity on cuticular water permeability of isolated cuticular membranes and leaf disks. Schreiber L; Skrabs M; Hartmann KD; Diamantopoulos P; Simanova E; Santrucek J Planta; 2001 Dec; 214(2):274-82. PubMed ID: 11800392 [TBL] [Abstract][Full Text] [Related]
9. The ecophysiology of leaf cuticular transpiration: are cuticular water permeabilities adapted to ecological conditions? Schuster AC; Burghardt M; Riederer M J Exp Bot; 2017 Nov; 68(19):5271-5279. PubMed ID: 29036342 [TBL] [Abstract][Full Text] [Related]
10. Review of sorption and diffusion of lipophilic molecules in cuticular waxes and the effects of accelerators on solute mobilities. Schreiber L J Exp Bot; 2006; 57(11):2515-23. PubMed ID: 16882646 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the diffusion of non-electrolytes across plant cuticles: properties of the lipophilic pathway. Buchholz A J Exp Bot; 2006; 57(11):2501-13. PubMed ID: 16829545 [TBL] [Abstract][Full Text] [Related]
12. Cutinized and suberized barriers in leaves and roots: Similarities and differences. Grünhofer P; Schreiber L J Plant Physiol; 2023 Mar; 282():153921. PubMed ID: 36780757 [TBL] [Abstract][Full Text] [Related]
13. Constructing functional cuticles: analysis of relationships between cuticle lipid composition, ultrastructure and water barrier function in developing adult maize leaves. Bourgault R; Matschi S; Vasquez M; Qiao P; Sonntag A; Charlebois C; Mohammadi M; Scanlon MJ; Smith LG; Molina I Ann Bot; 2020 Jan; 125(1):79-91. PubMed ID: 31504131 [TBL] [Abstract][Full Text] [Related]
14. Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: does the environment matter? Bueno A; Sancho-Knapik D; Gil-Pelegrín E; Leide J; Peguero-Pina JJ; Burghardt M; Riederer M Tree Physiol; 2020 Jun; 40(7):827-840. PubMed ID: 31728539 [TBL] [Abstract][Full Text] [Related]
15. Localization of the Transpiration Barrier in the Epi- and Intracuticular Waxes of Eight Plant Species: Water Transport Resistances Are Associated with Fatty Acyl Rather Than Alicyclic Components. Jetter R; Riederer M Plant Physiol; 2016 Feb; 170(2):921-34. PubMed ID: 26644508 [TBL] [Abstract][Full Text] [Related]
16. Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. Schönherr J J Exp Bot; 2006; 57(11):2471-91. PubMed ID: 16825315 [TBL] [Abstract][Full Text] [Related]
17. Characterization of hydrophilic and lipophilic pathways of Hedera helix L. cuticular membranes: permeation of water and uncharged organic compounds. Popp C; Burghardt M; Friedmann A; Riederer M J Exp Bot; 2005 Nov; 56(421):2797-806. PubMed ID: 16143718 [TBL] [Abstract][Full Text] [Related]
18. Surface plasmon resonance: An innovative method for studying water permeability of plant cuticles. Vráblová M; Marková D; Vrábl D; Koutník I; Sokolová B; Hronková M Plant Sci; 2021 Sep; 310():110978. PubMed ID: 34315594 [TBL] [Abstract][Full Text] [Related]
19. Compositional, structural and functional cuticle analysis of Prunus laurocerasus L. sheds light on cuticular barrier plasticity. Diarte C; Xavier de Souza A; Staiger S; Deininger AC; Bueno A; Burghardt M; Graell J; Riederer M; Lara I; Leide J Plant Physiol Biochem; 2021 Jan; 158():434-445. PubMed ID: 33257229 [TBL] [Abstract][Full Text] [Related]
20. The fruit cuticles of wild tomato species exhibit architectural and chemical diversity, providing a new model for studying the evolution of cuticle function. Yeats TH; Buda GJ; Wang Z; Chehanovsky N; Moyle LC; Jetter R; Schaffer AA; Rose JK Plant J; 2012 Feb; 69(4):655-66. PubMed ID: 22007785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]