These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11559756)

  • 1. Incomplete RNA polymerase II phosphorylation in Xenopus laevis early embryos.
    Palancade B; Bellier S; Almouzni G; Bensaude O
    J Cell Sci; 2001 Jul; 114(Pt 13):2483-9. PubMed ID: 11559756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smicl is required for phosphorylation of RNA polymerase II and affects 3'-end processing of RNA at the midblastula transition in Xenopus.
    Collart C; Ramis JM; Down TA; Smith JC
    Development; 2009 Oct; 136(20):3451-61. PubMed ID: 19783735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription-independent RNA polymerase II dephosphorylation by the FCP1 carboxy-terminal domain phosphatase in Xenopus laevis early embryos.
    Palancade B; Dubois MF; Dahmus ME; Bensaude O
    Mol Cell Biol; 2001 Oct; 21(19):6359-68. PubMed ID: 11533226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The distribution of RNA polymerase II largest subunit (RPB1) in the Xenopus germinal vesicle.
    Doyle O; Corden JL; Murphy C; Gall JG
    J Struct Biol; 2002; 140(1-3):154-66. PubMed ID: 12490164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear translocation and carboxyl-terminal domain phosphorylation of RNA polymerase II delineate the two phases of zygotic gene activation in mammalian embryos.
    Bellier S; Chastant S; Adenot P; Vincent M; Renard JP; Bensaude O
    EMBO J; 1997 Oct; 16(20):6250-62. PubMed ID: 9321404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dominant negative E2F inhibits progression of the cell cycle after the midblastula transition in Xenopus.
    Tanaka T; Ono T; Kitamura N; Kato JY
    Cell Struct Funct; 2003 Dec; 28(6):515-22. PubMed ID: 15004421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A maternal form of the phosphatase Cdc25A regulates early embryonic cell cycles in Xenopus laevis.
    Kim SH; Li C; Maller JL
    Dev Biol; 1999 Aug; 212(2):381-91. PubMed ID: 10433828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the patterns of RNA synthesis in early embryogenesis of Xenopus laevis.
    Shiokawa K; Misumi Y; Tashiro K; Nakakura N; Yamana K; Oh-uchida M
    Cell Differ Dev; 1989 Oct; 28(1):17-25. PubMed ID: 2478271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A NuRD Complex from Xenopus laevis Eggs Is Essential for DNA Replication during Early Embryogenesis.
    Christov CP; Dingwell KS; Skehel M; Wilkes HS; Sale JE; Smith JC; Krude T
    Cell Rep; 2018 Feb; 22(9):2265-2278. PubMed ID: 29490265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postfertilization deadenylation of mRNAs in Xenopus laevis embryos is sufficient to cause their degradation at the blastula stage.
    Audic Y; Omilli F; Osborne HB
    Mol Cell Biol; 1997 Jan; 17(1):209-18. PubMed ID: 8972201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chk1 is activated at the midblastula transition in Xenopus laevis embryos independently of DNA content and the cyclin E/Cdk2 developmental timer.
    Adjerid N; Wroble BN; Sible JC
    Cell Cycle; 2008 Apr; 7(8):1112-6. PubMed ID: 18414041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered expression of Chk1 disrupts cell cycle remodeling at the midblastula transition in Xenopus laevis embryos.
    Petrus MJ; Wilhelm DE; Murakami M; Kappas NC; Carter AD; Wroble BN; Sible JC
    Cell Cycle; 2004 Feb; 3(2):212-7. PubMed ID: 14712091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wee1 kinase alters cyclin E/Cdk2 and promotes apoptosis during the early embryonic development of Xenopus laevis.
    Wroble BN; Finkielstein CV; Sible JC
    BMC Dev Biol; 2007 Oct; 7():119. PubMed ID: 17961226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome wide decrease of DNA replication eye density at the midblastula transition of
    Platel M; Narassimprakash H; Ciardo D; Haccard O; Marheineke K
    Cell Cycle; 2019 Jul; 18(13):1458-1472. PubMed ID: 31130065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissection of the XChk1 signaling pathway in Xenopus laevis embryos.
    Kappas NC; Savage P; Chen KC; Walls AT; Sible JC
    Mol Biol Cell; 2000 Sep; 11(9):3101-8. PubMed ID: 10982403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of differential gene expression and mRNA stability in the developmental regulation of the hsp 30 gene family in heat-shocked Xenopus laevis embryos.
    Ohan NW; Heikkila JJ
    Dev Genet; 1995; 17(2):176-84. PubMed ID: 7586758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FCP1 phosphorylation by casein kinase 2 enhances binding to TFIIF and RNA polymerase II carboxyl-terminal domain phosphatase activity.
    Palancade B; Dubois MF; Bensaude O
    J Biol Chem; 2002 Sep; 277(39):36061-7. PubMed ID: 12138108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel matrix metalloproteinase gene (XMMP) encoding vitronectin-like motifs is transiently expressed in Xenopus laevis early embryo development.
    Yang M; Murray MT; Kurkinen M
    J Biol Chem; 1997 May; 272(21):13527-33. PubMed ID: 9153198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription.
    Newport J; Kirschner M
    Cell; 1982 Oct; 30(3):687-96. PubMed ID: 7139712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos.
    Stancheva I; El-Maarri O; Walter J; Niveleau A; Meehan RR
    Dev Biol; 2002 Mar; 243(1):155-65. PubMed ID: 11846484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.