BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 11559820)

  • 1. RNA polymerase II holoenzyme modifications accompany transcription reprogramming in herpes simplex virus type 1-infected cells.
    Jenkins HL; Spencer CA
    J Virol; 2001 Oct; 75(20):9872-84. PubMed ID: 11559820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ICP22 and the UL13 protein kinase are both required for herpes simplex virus-induced modification of the large subunit of RNA polymerase II.
    Long MC; Leong V; Schaffer PA; Spencer CA; Rice SA
    J Virol; 1999 Jul; 73(7):5593-604. PubMed ID: 10364308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription program.
    Rice SA; Long MC; Lam V; Schaffer PA; Spencer CA
    J Virol; 1995 Sep; 69(9):5550-9. PubMed ID: 7637000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Herpes simplex virus immediate-early protein ICP22 triggers loss of serine 2-phosphorylated RNA polymerase II.
    Fraser KA; Rice SA
    J Virol; 2007 May; 81(10):5091-101. PubMed ID: 17344289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ICP27 interacts with the C-terminal domain of RNA polymerase II and facilitates its recruitment to herpes simplex virus 1 transcription sites, where it undergoes proteasomal degradation during infection.
    Dai-Ju JQ; Li L; Johnson LA; Sandri-Goldin RM
    J Virol; 2006 Apr; 80(7):3567-81. PubMed ID: 16537625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Herpes simplex virus type 1 infection leads to loss of serine-2 phosphorylation on the carboxyl-terminal domain of RNA polymerase II.
    Fraser KA; Rice SA
    J Virol; 2005 Sep; 79(17):11323-34. PubMed ID: 16103184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repression of host RNA polymerase II transcription by herpes simplex virus type 1.
    Spencer CA; Dahmus ME; Rice SA
    J Virol; 1997 Mar; 71(3):2031-40. PubMed ID: 9032335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TATA-binding protein and TBP-associated factors during herpes simplex virus type 1 infection: localization at viral DNA replication sites.
    Quadt I; Günther AK; Voss D; Schelhaas M; Knebel-Mörsdorf D
    Virus Res; 2006 Feb; 115(2):207-13. PubMed ID: 16271277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of nematode TFIIE function reveal a link between Ser-5 phosphorylation of RNA polymerase II and the transition from transcription initiation to elongation.
    Yamamoto S; Watanabe Y; van der Spek PJ; Watanabe T; Fujimoto H; Hanaoka F; Ohkuma Y
    Mol Cell Biol; 2001 Jan; 21(1):1-15. PubMed ID: 11113176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Tat/TAR-dependent phosphorylation of RNA polymerase II C-terminal domain stimulates cotranscriptional capping of HIV-1 mRNA.
    Zhou M; Deng L; Kashanchi F; Brady JN; Shatkin AJ; Kumar A
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12666-71. PubMed ID: 14569024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of cdk9 during herpes simplex virus 1 infection impedes viral transcription.
    Ou M; Sandri-Goldin RM
    PLoS One; 2013; 8(10):e79007. PubMed ID: 24205359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of herpes simplex virus type 1 ICP8 and ICP27 proteins with cellular RNA polymerase II holoenzyme.
    Zhou C; Knipe DM
    J Virol; 2002 Jun; 76(12):5893-904. PubMed ID: 12021322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The carboxyl-terminal domain of RNA polymerase II is phosphorylated by a complex containing cdk9 and infected-cell protein 22 of herpes simplex virus 1.
    Durand LO; Advani SJ; Poon AP; Roizman B
    J Virol; 2005 Jun; 79(11):6757-62. PubMed ID: 15890914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a direct interaction between HSV-1 ICP27 and ICP8 proteins.
    Olesky M; McNamee EE; Zhou C; Taylor TJ; Knipe DM
    Virology; 2005 Jan; 331(1):94-105. PubMed ID: 15582656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hsc70 focus formation at the periphery of HSV-1 transcription sites requires ICP27.
    Li L; Johnson LA; Dai-Ju JQ; Sandri-Goldin RM
    PLoS One; 2008 Jan; 3(1):e1491. PubMed ID: 18231578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of sialyl-Lex expression by herpes simplex virus type 1 is dependent on viral immediate early RNA-activated transcription of host fucosyltransferase genes.
    Nyström K; Nordén R; Muylaert I; Elias P; Larson G; Olofsson S
    Glycobiology; 2009 Aug; 19(8):847-59. PubMed ID: 19369700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of phosphorylation by protein kinase CK2 on the human basal components of the RNA polymerase II transcription machinery.
    Cabrejos ME; Allende CC; Maldonado E
    J Cell Biochem; 2004 Sep; 93(1):2-10. PubMed ID: 15352156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The human RNA polymerase II interacts with the terminal stem-loop regions of the hepatitis delta virus RNA genome.
    Greco-Stewart VS; Miron P; Abrahem A; Pelchat M
    Virology; 2007 Jan; 357(1):68-78. PubMed ID: 16959288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution protein-DNA contacts for the yeast RNA polymerase II general transcription machinery.
    Chen BS; Mandal SS; Hampsey M
    Biochemistry; 2004 Oct; 43(40):12741-9. PubMed ID: 15461446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real time PCR for monitoring regulation of host gene expression in herpes simplex virus type 1-infected human diploid cells.
    Nyström K; Biller M; Grahn A; Lindh M; Larson G; Olofsson S
    J Virol Methods; 2004 Jun; 118(2):83-94. PubMed ID: 15081603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.