These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82. Monarchs in decline: a collateral landscape-level effect of modern agriculture. Stenoien C; Nail KR; Zalucki JM; Parry H; Oberhauser KS; Zalucki MP Insect Sci; 2018 Aug; 25(4):528-541. PubMed ID: 27650673 [TBL] [Abstract][Full Text] [Related]
83. Effects of simulated highway noise on heart rates of larval monarch butterflies, Davis AK; Schroeder H; Yeager I; Pearce J Biol Lett; 2018 May; 14(5):. PubMed ID: 29743264 [TBL] [Abstract][Full Text] [Related]
84. Accumulation and variability of maize pollen deposition on leaves of European Lepidoptera host plants and relation to release rates and deposition determined by standardised technical sampling. Hofmann F; Kruse-Plass M; Kuhn U; Otto M; Schlechtriemen U; Schröder B; Vögel R; Wosniok W Environ Sci Eur; 2016; 28(1):14. PubMed ID: 27752448 [TBL] [Abstract][Full Text] [Related]
85. Assessment of the impacts of microbial plant protection products containing Bacillus thuringiensis on the survival of adults and larvae of the honeybee (Apis mellifera). Steinigeweg C; Alkassab AT; Beims H; Eckert JH; Richter D; Pistorius J Environ Sci Pollut Res Int; 2021 Jun; 28(23):29773-29780. PubMed ID: 33566293 [TBL] [Abstract][Full Text] [Related]
86. Considerations for conducting research in agricultural biotechnology. Shelton AM J Invertebr Pathol; 2003 Jun; 83(2):110-2. PubMed ID: 12788279 [TBL] [Abstract][Full Text] [Related]
87. Cardenolide, Potassium, and Pyrethroid Insecticide Combinations Reduce Growth and Survival of Monarch Butterfly Caterpillars (Lepidoptera: Nymphalidae). Krueger AJ; Robinson EA; Weissling TJ; Vélez AM; Anderson TD J Econ Entomol; 2021 Dec; 114(6):2370-2380. PubMed ID: 34532742 [TBL] [Abstract][Full Text] [Related]
88. Reply to the EFSA (2016) on the relevance of recent publications (Hofmann et al. 2014, 2016) on environmental risk assessment and management of Bt-maize events (MON810, Bt11 and 1507). Kruse-Plass M; Hofmann F; Kuhn U; Otto M; Schlechtriemen U; Schröder B; Vögel R; Wosniok W Environ Sci Eur; 2017; 29(1):12. PubMed ID: 28331779 [TBL] [Abstract][Full Text] [Related]
89. Predators of monarch butterfly eggs and neonate larvae are more diverse than previously recognised. Hermann SL; Blackledge C; Haan NL; Myers AT; Landis DA Sci Rep; 2019 Oct; 9(1):14304. PubMed ID: 31586127 [TBL] [Abstract][Full Text] [Related]
90. Behavioral and ecological interactions of foraging mice (Peromyscus melanotis) with overwintering monarch butterflies (Danaus plexippus) in México. Glendinning JI; Mejia AA; Brower LP Oecologia; 1988 Mar; 75(2):222-227. PubMed ID: 28310839 [TBL] [Abstract][Full Text] [Related]
91. High Survivorship of First-Generation Monarch Butterfly Eggs to Third Instar Associated with a Diverse Arthropod Community. Stevenson M; Hudman KL; Scott A; Contreras K; Kopachena JG Insects; 2021 Jun; 12(6):. PubMed ID: 34205618 [TBL] [Abstract][Full Text] [Related]
92. Monarch caterpillars are robust to combined exposure to the roadside micronutrients sodium and zinc. Shephard AM; Mitchell TS; Snell-Rood EC Conserv Physiol; 2021; 9(1):coab061. PubMed ID: 34386239 [TBL] [Abstract][Full Text] [Related]
93. Potential Risk of Pollen from Genetically Modified MON 810 Maize Containing Cry1Ab Toxin to Protected Lepidopteran Larvae in the Pannonian Biogeographical Region-A Retrospective View. Darvas B; Gyurcsó G; Takács E; Székács A Insects; 2022 Feb; 13(2):. PubMed ID: 35206779 [TBL] [Abstract][Full Text] [Related]
94. Influence of ozone air pollution on plant-herbivore interactions. Part 2: Effects of ozone on feeding preference, growth and consumption rates of monarch butterflies (Danaus plexippus). Bolsinger M; Lier ME; Hughes PR Environ Pollut; 1992; 77(1):31-7. PubMed ID: 15091975 [TBL] [Abstract][Full Text] [Related]
95. Effects of in situ climate warming on monarch caterpillar (Danaus plexippus) development. Lemoine NP; Capdevielle JN; Parker JD PeerJ; 2015; 3():e1293. PubMed ID: 26528403 [TBL] [Abstract][Full Text] [Related]
96. Feeding Behaviour on Host Plants May Influence Potential Exposure to Bt Maize Pollen of Aglais Urticae Larvae (Lepidoptera, Nymphalidae). Lang A; Otto M Insects; 2015 Aug; 6(3):760-71. PubMed ID: 26463415 [TBL] [Abstract][Full Text] [Related]
97. A New Method for in Situ Measurement of Bt-Maize Pollen Deposition on Host-Plant Leaves. Hofmann F; Otto M; Kuhn U; Ober S; Schlechtriemen U; Vögel R Insects; 2011 Feb; 2(1):12-21. PubMed ID: 26467496 [TBL] [Abstract][Full Text] [Related]
98. Monooxygenase activities of fat body and gut homogenates of monarch butterfly larvae,Danaus plexippus, fed four cardenolide-containing milkweeds,Asclepias spp. Marty MA; Gee SJ; Krieger RI J Chem Ecol; 1982 Apr; 8(4):797-805. PubMed ID: 24415126 [TBL] [Abstract][Full Text] [Related]
99. Spatial exposure-hazard and landscape models for assessing the impact of GM crops on non-target organisms. Leclerc M; Walker E; Messéan A; Soubeyrand S Sci Total Environ; 2018 May; 624():470-479. PubMed ID: 29268219 [TBL] [Abstract][Full Text] [Related]
100. Ultraviolet irradiation of maize (Zea Mays L.) pollen grains : II. Pollen genotype effects on plant characteristics. Pfahler PL; Linskens HF Theor Appl Genet; 1977 Jan; 50(1):17-21. PubMed ID: 24407493 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]