BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11560173)

  • 1. The effects of radiotherapy treatment uncertainties on the delivered dose distribution and tumour control probability.
    Booth JT; Zavgorodni SF
    Australas Phys Eng Sci Med; 2001 Jun; 24(2):71-8. PubMed ID: 11560173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evaluation method of clinical impact with setup, range, and radiosensitivity uncertainties in fractionated carbon-ion therapy.
    Sakama M; Kanematsu N
    Phys Med Biol; 2018 Jun; 63(13):135003. PubMed ID: 29863484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A TCP model incorporating setup uncertainty and tumor cell density variation in microscopic extension to guide treatment planning.
    Jin JY; Kong FM; Liu D; Ren L; Li H; Zhong H; Movsas B; Chetty IJ
    Med Phys; 2011 Jan; 38(1):439-48. PubMed ID: 21361212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the equivalent uniform stochastic dose (EUSD) to TCP calculations incorporating dose uncertainty and fractionation effects.
    Zavgorodni S
    Australas Phys Eng Sci Med; 2008 Mar; 31(1):1-9. PubMed ID: 18488958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential implications of the bystander effect on TCP and EUD when considering target volume dose heterogeneity.
    Balderson MJ; Kirkby C
    Int J Radiat Biol; 2015 Jan; 91(1):54-61. PubMed ID: 25004946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of generalized time-dependent TCP model and the investigation of the effect of repopulation and weekend breaks in fractionated external beam therapy.
    Lee TK; Rosen II
    J Theor Biol; 2021 Mar; 512():110565. PubMed ID: 33346019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of local control due to tumor displacement as a function of margin size, dose-response slope, and number of fractions.
    Selvaraj J; Uzan J; Baker C; Nahum A
    Med Phys; 2013 Apr; 40(4):041715. PubMed ID: 23556885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inclusion of geometric uncertainties in treatment plan evaluation.
    van Herk M; Remeijer P; Lebesque JV
    Int J Radiat Oncol Biol Phys; 2002 Apr; 52(5):1407-22. PubMed ID: 11955756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EUD-based radiotherapy treatment plan evaluation: incorporating physical and Monte Carlo statistical dose uncertainties.
    Cranmer-Sargison G; Zavgorodni S
    Phys Med Biol; 2005 Sep; 50(17):4097-109. PubMed ID: 16177533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patient-specific voxel-level dose prescription for prostate cancer radiotherapy considering tumor cell density and grade distribution.
    Zhao Y; Haworth A; Reynolds HM; Her EJ; Sun Y; Finnegan R; Rowshanfarzad P; Ebert MA
    Med Phys; 2023 Jun; 50(6):3746-3761. PubMed ID: 36734620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The modelled benefits of individualizing radiotherapy patients' dose using cellular radiosensitivity assays with inherent variability.
    Mackay RI; Hendry JH
    Radiother Oncol; 1999 Jan; 50(1):67-75. PubMed ID: 10225559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformal irradiation of concave-shaped PTVs in the treatment of prostate cancer by simple 1D intensity-modulated beams.
    Fiorino C; Broggi S; Corletto D; Cattaneo GM; Calandrino R
    Radiother Oncol; 2000 Apr; 55(1):49-58. PubMed ID: 10788688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment and quantification of patient set-up errors in nasopharyngeal cancer patients and their biological and dosimetric impact in terms of generalized equivalent uniform dose (gEUD), tumour control probability (TCP) and normal tissue complication probability (NTCP).
    Boughalia A; Marcie S; Fellah M; Chami S; Mekki F
    Br J Radiol; 2015 Jun; 88(1050):20140839. PubMed ID: 25882689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling I-125 permanent implant prostate brachytherapy Monte Carlo dose calculations with radiobiological models.
    Miksys N; Haidari M; Vigneault E; Martin AG; Beaulieu L; Thomson RM
    Med Phys; 2017 Aug; 44(8):4329-4340. PubMed ID: 28455849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical investigation of adequate range uncertainty margins in proton treatment planning to preserve tumor control probability.
    Taasti VT; Jeong J; Jackson A; Deasy JO
    Acta Oncol; 2019 Oct; 58(10):1446-1450. PubMed ID: 31241385
    [No Abstract]   [Full Text] [Related]  

  • 16. Adapting radiotherapy to hypoxic tumours.
    Malinen E; Søvik A; Hristov D; Bruland ØS; Olsen DR
    Phys Med Biol; 2006 Oct; 51(19):4903-21. PubMed ID: 16985278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiobiological parameters in a tumour control probability model for prostate cancer LDR brachytherapy.
    Her EJ; Reynolds HM; Mears C; Williams S; Moorehouse C; Millar JL; Ebert MA; Haworth A
    Phys Med Biol; 2018 Jun; 63(13):135011. PubMed ID: 29799812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viability of the EUD and TCP concepts as reliable dose indicators.
    Ebert MA
    Phys Med Biol; 2000 Feb; 45(2):441-57. PubMed ID: 10701514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new method for optimum dose distribution determination taking tumour mobility into account.
    Stavrev PV; Stavreva NA; Round WH
    Phys Med Biol; 1996 Sep; 41(9):1679-89. PubMed ID: 8884905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of microscopic disease extension, extra-CTV tumour islets, incidental dose and dose conformity on tumour control probability.
    Selvaraj J; Baker C; Nahum A
    Australas Phys Eng Sci Med; 2016 Jun; 39(2):493-500. PubMed ID: 27168065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.