These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 11561664)
1. Information transfer rate in a five-classes brain-computer interface. Obermaier B; Neuper C; Guger C; Pfurtscheller G IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):283-8. PubMed ID: 11561664 [TBL] [Abstract][Full Text] [Related]
2. The Berlin Brain-Computer Interface: EEG-based communication without subject training. Blankertz B; Dornhege G; Krauledat M; Müller KR; Kunzmann V; Losch F; Curio G IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):147-52. PubMed ID: 16792281 [TBL] [Abstract][Full Text] [Related]
3. Continuous EEG classification during motor imagery--simulation of an asynchronous BCI. Townsend G; Graimann B; Pfurtscheller G IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):258-65. PubMed ID: 15218939 [TBL] [Abstract][Full Text] [Related]
4. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control. Huang D; Lin P; Fei DY; Chen X; Bai O J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679 [TBL] [Abstract][Full Text] [Related]
5. A new brain-computer interface design using fuzzy ARTMAP. Palaniappan R; Paramesran R; Nishida S; Saiwaki N IEEE Trans Neural Syst Rehabil Eng; 2002 Sep; 10(3):140-8. PubMed ID: 12503778 [TBL] [Abstract][Full Text] [Related]
6. Toward a hybrid brain-computer interface based on imagined movement and visual attention. Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550 [TBL] [Abstract][Full Text] [Related]
7. Cognitive tasks for driving a brain-computer interfacing system: a pilot study. Curran E; Sykacek P; Stokes M; Roberts SJ; Penny W; Johnsrude I; Owen AM IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):48-54. PubMed ID: 15068187 [TBL] [Abstract][Full Text] [Related]
8. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects. Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513 [TBL] [Abstract][Full Text] [Related]
9. Utilizing gamma band to improve mental task based brain-computer interface design. Palaniappan R IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):299-303. PubMed ID: 17009489 [TBL] [Abstract][Full Text] [Related]
10. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis. Kamousi B; Liu Z; He B IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):166-71. PubMed ID: 16003895 [TBL] [Abstract][Full Text] [Related]
11. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977 [TBL] [Abstract][Full Text] [Related]
12. Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns. Wang T; Deng J; He B Clin Neurophysiol; 2004 Dec; 115(12):2744-53. PubMed ID: 15546783 [TBL] [Abstract][Full Text] [Related]
13. Rapid prototyping of an EEG-based brain-computer interface (BCI). Guger C; Schlögl A; Neuper C; Walterspacher D; Strein T; Pfurtscheller G IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):49-58. PubMed ID: 11482363 [TBL] [Abstract][Full Text] [Related]
14. Neurofeedback-based motor imagery training for brain-computer interface (BCI). Hwang HJ; Kwon K; Im CH J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521 [TBL] [Abstract][Full Text] [Related]
15. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects. Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371 [TBL] [Abstract][Full Text] [Related]
16. Graz-BCI: state of the art and clinical applications. Pfurtscheller G; Neuper C; Müller GR; Obermaier B; Krausz G; Schlögl A; Scherer R; Graimann B; Keinrath C; Skliris D; Wörtz M; Supp G; Schrank C IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):177-80. PubMed ID: 12899267 [TBL] [Abstract][Full Text] [Related]
17. Phase synchronization for the recognition of mental tasks in a brain-computer interface. Gysels E; Celka P IEEE Trans Neural Syst Rehabil Eng; 2004 Dec; 12(4):406-15. PubMed ID: 15614996 [TBL] [Abstract][Full Text] [Related]
18. [Training protocol evaluation of a brain-computer interface: mental tasks proposal]. Ron-Angevin R; Díaz-Estrella A Rev Neurol; 2008 Aug 16-31; 47(4):197-203. PubMed ID: 18671209 [TBL] [Abstract][Full Text] [Related]
19. Plausibility assessment of a 2-state self-paced mental task-based BCI using the no-control performance analysis. Faradji F; Ward RK; Birch GE J Neurosci Methods; 2009 Jun; 180(2):330-9. PubMed ID: 19439361 [TBL] [Abstract][Full Text] [Related]
20. An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in a brain-computer interface. Wang T; He B J Neural Eng; 2004 Mar; 1(1):1-7. PubMed ID: 15876616 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]