These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 11561818)

  • 1. Dissociating sensory and cognitive contributions to visual persistence I. Photoreceptor response duration as a function of flash intensity, adaptation state, and candidate code.
    Nisly-Nagele SJ; Wasserman GS
    Biol Cybern; 2001 Sep; 85(3):167-83. PubMed ID: 11561818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociating sensory and cognitive contributions to visual persistence II. Photoreceptor integration of flash pairs as a function of interflash interval, intensity, integration site, and candidate code.
    Wasserman GS; Nisly-Nagele SJ
    Biol Cybern; 2001 Sep; 85(3):185-94. PubMed ID: 11561819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Receiver operating characteristic (ROC) analysis of neural code efficacies. I. Graded photoreceptor potentials and data quality.
    Cheng Z; Wasserman GS
    Biol Cybern; 1996 Aug; 75(2):93-103. PubMed ID: 8855348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receiver operating characteristic (ROC) analysis of neural code efficacies. II. Optic nerve action potentials and neural transmission.
    Cheng Z; Wasserman GS
    Biol Cybern; 1996 Aug; 75(2):105-15. PubMed ID: 8855349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Categorical and prolonged potentials are evoked when brief, intermediate-intensity flashes stimulate horseshoe crab lateral eye photoreceptors during octopamine neuromodulation.
    Lim CC; Wasserman GS
    Biol Signals Recept; 2001; 10(6):399-415. PubMed ID: 11721095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do weak adapting backgrounds uncover multiple components in the electroretinogram of the horseshoe crab?
    Lucas JC; Weiner WW; Ahmed J
    Biomed Sci Instrum; 2003; 39():105-10. PubMed ID: 12724877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual efference in Limulus: in vitro temperature-dependent neuromodulation of photoreceptor potential timing by octopamine and substance P.
    Lim-Kessler CC; Bolbecker AR; Li J; Wasserman GS
    Vis Neurosci; 2008; 25(1):83-94. PubMed ID: 18282313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation-dependent differences in electroretinographic latency patterns in uniform and variegated horseshoe crabs.
    Kim B; Wasserman GS
    Biol Signals Recept; 1998; 7(4):227-34. PubMed ID: 9730582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual readaptation after flash exposure under scotopic conditions. A study using optokinetic nystagmus as an indicator of visual perception.
    Wang L
    Acta Ophthalmol Suppl (1985); 1994; (212):1-50. PubMed ID: 8205058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying information and performance for flash detection in the blowfly photoreceptor.
    Xu P; Abshire P
    Neural Netw; 2005; 18(5-6):479-87. PubMed ID: 16095876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement and phototransduction in the ventral eye of limulus.
    Fein A; Charlton JS
    J Gen Physiol; 1977 May; 69(5):553-69. PubMed ID: 864432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PROBABILITY OF OCCURRENCE OF DISCRETE POTENTIAL WAVES IN THE EYE OF LIMULUS.
    FUORTES MG; YEANDLE S
    J Gen Physiol; 1964 Jan; 47(3):443-63. PubMed ID: 14100964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual efference neuromodulates retinal timing: in vivo roles of octopamine, substance P, circadian phase, and efferent activation in Limulus.
    Bolbecker AR; Lim-Kessler CC; Li J; Swan A; Lewis A; Fleets J; Wasserman GS
    J Neurophysiol; 2009 Aug; 102(2):1132-8. PubMed ID: 19535477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light adaptation increases response latency of alpha ganglion cells via a threshold-like nonlinearity.
    Chang L; He S
    Neuroscience; 2014 Jan; 256():101-16. PubMed ID: 24144626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein translocation in photoreceptor light adaptation: a common theme in vertebrate and invertebrate vision.
    Arshavsky VY
    Sci STKE; 2003 Oct; 2003(204):PE43. PubMed ID: 14560045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoreceptor cells with unusual functional properties on the ventral nerve of Limulus.
    Nagy K; Dorlöchter M; Kläsen S; Steinbusch D
    Vis Neurosci; 1999; 16(6):1191-7. PubMed ID: 10614598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of background luminance on visual responses to strong flashes: perceived brightness and the early rise of photoreceptor responses.
    Djupsund K; Fyhrquist N; Hariyama T; Donner K
    Vision Res; 1996 Oct; 36(20):3253-64. PubMed ID: 8944285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term light adaptation in photoreceptors of the housefly, Musca domestica.
    Burton BG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Aug; 188(7):527-38. PubMed ID: 12209341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seeing the light: photobehavior in fruit fly larvae.
    Keene AC; Sprecher SG
    Trends Neurosci; 2012 Feb; 35(2):104-10. PubMed ID: 22222349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two linear rules relate the latencies of visual responses to their critical durations.
    Kong KL; Wasserman GS
    Sens Processes; 1978 Mar; 2(1):1-8. PubMed ID: 705352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.