These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 11561900)

  • 1. Mechanical characterization of brushite and hydroxyapatite cements.
    Charrière E; Terrazzoni S; Pittet C; Mordasini PH; Dutoit M; Lemaître J; Zysset PH
    Biomaterials; 2001 Nov; 22(21):2937-45. PubMed ID: 11561900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation.
    Aghyarian S; Rodriguez LC; Chari J; Bentley E; Kosmopoulos V; Lieberman IH; Rodrigues DC
    J Biomater Appl; 2014 Nov; 29(5):688-98. PubMed ID: 25085810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compressive, diametral tensile and biaxial flexural strength of cutting-edge calcium phosphate cements.
    Luo J; Ajaxon I; Ginebra MP; Engqvist H; Persson C
    J Mech Behav Biomed Mater; 2016 Jul; 60():617-627. PubMed ID: 27082025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of fibre reinforcement on the mechanical properties of brushite cement.
    Gorst NJ; Perrie Y; Gbureck U; Hutton AL; Hofmann MP; Grover LM; Barralet JE
    Acta Biomater; 2006 Jan; 2(1):95-102. PubMed ID: 16701863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of brushite cements with improved properties by adding graphene oxide.
    Nasrollahi N; Nourian Dehkordi A; Jamshidizad A; Chehelgerdi M
    Int J Nanomedicine; 2019; 14():3785-3797. PubMed ID: 31239662
    [No Abstract]   [Full Text] [Related]  

  • 6. Fiber reinforcement of a biomimetic bone cement.
    Panzavolta S; Bracci B; Focarete ML; Gualandi C; Bigi A
    J Mater Sci Mater Med; 2012 Jun; 23(6):1363-70. PubMed ID: 22528068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcing of a calcium phosphate cement with hydroxyapatite crystals of various morphologies.
    Neira IS; Kolen'ko YV; Kommareddy KP; Manjubala I; Yoshimura M; Guitián F
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3276-84. PubMed ID: 21038864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of bioactive filler content on mechanical properties and osteoconductivity of bioactive bone cement.
    Kobayashi M; Nakamura T; Shinzato S; Mousa WF; Nishio K; Ohsawa K; Kokubo T; Kikutani T
    J Biomed Mater Res; 1999 Sep; 46(4):447-57. PubMed ID: 10398005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement.
    Rödel M; Teßmar J; Groll J; Gbureck U
    Acta Biomater; 2018 Oct; 79():182-201. PubMed ID: 30149213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Setting reaction and hardening of an apatitic calcium phosphate cement.
    Ginebra MP; Fernández E; De Maeyer EA; Verbeeck RM; Boltong MG; Ginebra J; Driessens FC; Planell JA
    J Dent Res; 1997 Apr; 76(4):905-12. PubMed ID: 9126187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyapatite cement scaffolds with controlled macroporosity: fabrication protocol and mechanical properties.
    Charrière E; Lemaitre J; Zysset P
    Biomaterials; 2003 Feb; 24(5):809-17. PubMed ID: 12485799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro ageing of brushite calcium phosphate cement.
    Grover LM; Knowles JC; Fleming GJ; Barralet JE
    Biomaterials; 2003 Oct; 24(23):4133-41. PubMed ID: 12853243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation.
    Alge DL; Santa Cruz G; Goebel WS; Chu TM
    Biomed Mater; 2009 Apr; 4(2):025016. PubMed ID: 19349655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined effect of strontium and pyrophosphate on the properties of brushite cements.
    Alkhraisat MH; Mariño FT; Rodríguez CR; Jerez LB; Cabarcos EL
    Acta Biomater; 2008 May; 4(3):664-70. PubMed ID: 18206432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cement from magnesium substituted hydroxyapatite.
    Lilley KJ; Gbureck U; Knowles JC; Farrar DF; Barralet JE
    J Mater Sci Mater Med; 2005 May; 16(5):455-60. PubMed ID: 15875256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of polymer addition on the mechanical properties of a premixed calcium phosphate cement.
    Engstrand J; Persson C; Engqvist H
    Biomatter; 2013; 3(4):. PubMed ID: 24270588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a nonrigid, durable calcium phosphate cement for use in periodontal bone repair.
    Xu HH; Takagi S; Sun L; Hussain L; Chow LC; Guthrie WF; Yen JH
    J Am Dent Assoc; 2006 Aug; 137(8):1131-8. PubMed ID: 16873330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Setting characteristics and mechanical behaviour of a calcium phosphate bone cement containing tetracycline.
    Ratier A; Gibson IR; Best SM; Freche M; Lacout JL; Rodriguez F
    Biomaterials; 2001 May; 22(9):897-901. PubMed ID: 11311008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eggshell derived brushite bone cement with minimal inflammatory response and higher osteoconductive potential.
    Jayasree R; Kumar TSS; Venkateswari R; Nankar RP; Doble M
    J Mater Sci Mater Med; 2019 Oct; 30(10):113. PubMed ID: 31583477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressive fatigue properties of an acidic calcium phosphate cement-effect of phase composition.
    Ajaxon I; Öhman Mägi C; Persson C
    J Mater Sci Mater Med; 2017 Mar; 28(3):41. PubMed ID: 28144853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.