BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 11562138)

  • 21. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Material properties and structure-function relationships in the menisci.
    Fithian DC; Kelly MA; Mow VC
    Clin Orthop Relat Res; 1990 Mar; (252):19-31. PubMed ID: 2406069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonlinear tensile properties of bovine articular cartilage and their variation with age and depth.
    Charlebois M; McKee MD; Buschmann MD
    J Biomech Eng; 2004 Apr; 126(2):129-37. PubMed ID: 15179842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tensile properties of the human acetabular labrum and hip labral reconstruction grafts.
    Ferro FP; Philippon MJ; Rasmussen MT; Smith SD; LaPrade RF; Wijdicks CA
    Am J Sports Med; 2015 May; 43(5):1222-7. PubMed ID: 25660189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus.
    Akizuki S; Mow VC; Müller F; Pita JC; Howell DS; Manicourt DH
    J Orthop Res; 1986; 4(4):379-92. PubMed ID: 3783297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An in vitro investigation of the acetabular labral seal in hip joint mechanics.
    Ferguson SJ; Bryant JT; Ganz R; Ito K
    J Biomech; 2003 Feb; 36(2):171-8. PubMed ID: 12547354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical strains passing through the acetabular labrum modify its shape during hip motion: an anatomical study.
    Ollivier M; Le Corroller T; Parratte S; Chabrand P; Argenson JN; Gagey O
    Knee Surg Sports Traumatol Arthrosc; 2017 Jun; 25(6):1967-1974. PubMed ID: 28314887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Articular cartilage friction increases in hip joints after the removal of acetabular labrum.
    Song Y; Ito H; Kourtis L; Safran MR; Carter DR; Giori NJ
    J Biomech; 2012 Feb; 45(3):524-30. PubMed ID: 22176711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The compressive behavior of the human glenoid labrum may explain the common patterns of SLAP lesions.
    Smith CD; Masouros SD; Hill AM; Wallace AL; Amis AA; Bull AM
    Arthroscopy; 2009 May; 25(5):504-9. PubMed ID: 19409308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability.
    Périé D; Korda D; Iatridis JC
    J Biomech; 2005 Nov; 38(11):2164-71. PubMed ID: 16154403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure, composition and anisotropic swelling of the bovine acetabular labrum.
    Huber S; Santschi MXT; Schadow J; Leunig M; Ferguson SJ
    J Mech Behav Biomed Mater; 2024 Feb; 150():106333. PubMed ID: 38134586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vascular supply to the acetabular labrum.
    Kalhor M; Horowitz K; Beck M; Nazparvar B; Ganz R
    J Bone Joint Surg Am; 2010 Nov; 92(15):2570-5. PubMed ID: 21048175
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical properties of hip cartilage in experimental animal models.
    Athanasiou KA; Agarwal A; Muffoletto A; Dzida FJ; Constantinides G; Clem M
    Clin Orthop Relat Res; 1995 Jul; (316):254-66. PubMed ID: 7634715
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tensile strain in the anterior part of the acetabular labrum during provocative maneuvering of the normal hip.
    Dy CJ; Thompson MT; Crawford MJ; Alexander JW; McCarthy JC; Noble PC
    J Bone Joint Surg Am; 2008 Jul; 90(7):1464-72. PubMed ID: 18594094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Can the Acetabular Labrum Be Reconstructed With a Meniscal Allograft? An In Vivo Pig Model.
    Maimaitimin M; Yang F; Huang H; Ao Y; Wang J
    Clin Orthop Relat Res; 2024 Feb; 482(2):386-398. PubMed ID: 37732715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation.
    Huang CY; Stankiewicz A; Ateshian GA; Mow VC
    J Biomech; 2005 Apr; 38(4):799-809. PubMed ID: 15713301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of exogenous crosslinking on in vitro tensile and compressive moduli of lumbar intervertebral discs.
    Chuang SY; Odono RM; Hedman TP
    Clin Biomech (Bristol, Avon); 2007 Jan; 22(1):14-20. PubMed ID: 17005305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The contribution of the acetabular labrum to hip joint stability: a quantitative analysis using a dynamic three-dimensional robot model.
    Bonner TF; Colbrunn RW; Bottros JJ; Mutnal AB; Greeson CB; Klika AK; van den Bogert AJ; Barsoum WK
    J Biomech Eng; 2015 Jun; 137(6):061012. PubMed ID: 25759977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical properties and collagen fiber orientation of temporomandibular joint discs in dogs: 2. Tensile mechanical properties of the discs.
    Teng S; Xu Y; Cheng M; Li Y
    J Craniomandib Disord; 1991; 5(2):107-14. PubMed ID: 1812136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compressive properties and function-composition relationships of developing bovine articular cartilage.
    Williamson AK; Chen AC; Sah RL
    J Orthop Res; 2001 Nov; 19(6):1113-21. PubMed ID: 11781013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.