These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 11562138)

  • 41. Use of hydrodynamic forces to engineer cartilaginous tissues resembling the non-uniform structure and function of meniscus.
    Marsano A; Wendt D; Raiteri R; Gottardi R; Stolz M; Wirz D; Daniels AU; Salter D; Jakob M; Quinn TM; Martin I
    Biomaterials; 2006 Dec; 27(35):5927-34. PubMed ID: 16949667
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle.
    Yeni YN; Dong XN; Fyhrie DP; Les CM
    Biomed Mater Eng; 2004; 14(3):303-10. PubMed ID: 15299242
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Tensile mechanics of mandibular condylar cartilage].
    Kang H; Bao G; Dong Y; Yi X; Chao Y; Chen M
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2000 Apr; 18(2):85-7. PubMed ID: 12539336
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A technique for measuring the compressive modulus of articular cartilage under physiological loading rates with preliminary results.
    Mann RW
    Proc Inst Mech Eng H; 2001; 215(1):123-4. PubMed ID: 11323982
    [No Abstract]   [Full Text] [Related]  

  • 45. The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis.
    Chegini S; Beck M; Ferguson SJ
    J Orthop Res; 2009 Feb; 27(2):195-201. PubMed ID: 18752280
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression.
    Chahine NO; Wang CC; Hung CT; Ateshian GA
    J Biomech; 2004 Aug; 37(8):1251-61. PubMed ID: 15212931
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Contribution of collagen fibers to the compressive stiffness of cartilaginous tissues.
    Römgens AM; van Donkelaar CC; Ito K
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1221-31. PubMed ID: 23443749
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of loading and material on the biomechanical properties and vitality of bovine cartilage in vitro.
    Pöllänen R; Tikkanen AM; Lammi MJ; Lappalainen R
    J Appl Biomater Biomech; 2011; 9(1):47-53. PubMed ID: 21445828
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hip chondrolabral mechanics during activities of daily living: Role of the labrum and interstitial fluid pressurization.
    Todd JN; Maak TG; Ateshian GA; Maas SA; Weiss JA
    J Biomech; 2018 Mar; 69():113-120. PubMed ID: 29366559
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The labro-acetabular complex.
    Field RE; Rajakulendran K
    J Bone Joint Surg Am; 2011 May; 93 Suppl 2():22-7. PubMed ID: 21543684
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model.
    Julkunen P; Kiviranta P; Wilson W; Jurvelin JS; Korhonen RK
    J Biomech; 2007; 40(8):1862-70. PubMed ID: 17052722
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biomechanical assessment of tissue retrieved after in vivo cartilage defect repair: tensile modulus of repair tissue and integration with host cartilage.
    Gratz KR; Wong VW; Chen AC; Fortier LA; Nixon AJ; Sah RL
    J Biomech; 2006; 39(1):138-46. PubMed ID: 16271598
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acetabular rim degeneration: a constant finding in the aged hip.
    Leunig M; Beck M; Woo A; Dora C; Kerboull M; Ganz R
    Clin Orthop Relat Res; 2003 Aug; (413):201-7. PubMed ID: 12897611
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The influence of the acetabular labrum seal, intact articular superficial zone and synovial fluid thixotropy on squeeze-film lubrication of a spherical synovial joint.
    Hlavácek M
    J Biomech; 2002 Oct; 35(10):1325-35. PubMed ID: 12231278
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tensile properties of the physis vary with anatomic location, thickness, strain rate and age.
    Williams JL; Do PD; Eick JD; Schmidt TL
    J Orthop Res; 2001 Nov; 19(6):1043-8. PubMed ID: 11781003
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biomechanical evaluation contribution of the acetabular labrum to hip stability.
    Lertwanich P; Plakseychuk A; Kramer S; Linde-Rosen M; Maeyama A; Fu FH; Smolinski P
    Knee Surg Sports Traumatol Arthrosc; 2016 Jul; 24(7):2338-45. PubMed ID: 25749654
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Significance of the lateral epiphysis of the acetabulum to hip joint stability.
    Singh S; Hee HT; Low YP
    J Pediatr Orthop; 2000; 20(3):344-8. PubMed ID: 10823602
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Induction of advanced glycation end products and alterations of the tensile properties of articular cartilage.
    Chen AC; Temple MM; Ng DM; Verzijl N; DeGroot J; TeKoppele JM; Sah RL
    Arthritis Rheum; 2002 Dec; 46(12):3212-7. PubMed ID: 12483725
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Strain-rate-dependent non-linear tensile properties of the superficial zone of articular cartilage.
    Ahsanizadeh S; Li L
    Connect Tissue Res; 2015 Nov; 56(6):469-76. PubMed ID: 26291674
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition.
    Wilson W; Huyghe JM; van Donkelaar CC
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):43-53. PubMed ID: 16710737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.