These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 11562138)

  • 81. In situ compressive properties of the glenoid labrum.
    Carey J; Small CF; Pichora DR
    J Biomed Mater Res; 2000 Sep; 51(4):711-6. PubMed ID: 10880120
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation.
    Li LP; Herzog W
    Biorheology; 2004; 41(3-4):181-94. PubMed ID: 15299251
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Cartilage collagen matrix reorientation and displacement in response to surface loading.
    Moger CJ; Arkill KP; Barrett R; Bleuet P; Ellis RE; Green EM; Winlove CP
    J Biomech Eng; 2009 Mar; 131(3):031008. PubMed ID: 19154067
    [TBL] [Abstract][Full Text] [Related]  

  • 84. First insights into human acetabular labrum cell metabolism.
    Dhollander AA; Lambrecht S; Verdonk PC; Audenaert EA; Almqvist KF; Pattyn C; Verdonk R; Elewaut D; Verbruggen G
    Osteoarthritis Cartilage; 2012 Jul; 20(7):670-7. PubMed ID: 22503910
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The acetabular labrum tissue shows unique transcriptome signatures compared to cartilage and responds to combined cyclic compression and surface shearing.
    Huber S; Ladner Y; Stoddart MJ; Leunig M; Ferguson SJ
    Gene; 2023 Mar; 856():147140. PubMed ID: 36574933
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Tissue-engineered articular cartilage exhibits tension-compression nonlinearity reminiscent of the native cartilage.
    Kelly TA; Roach BL; Weidner ZD; Mackenzie-Smith CR; O'Connell GD; Lima EG; Stoker AM; Cook JL; Ateshian GA; Hung CT
    J Biomech; 2013 Jul; 46(11):1784-91. PubMed ID: 23791084
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Tensile properties of the human glenoid labrum.
    Smith CD; Masouros SD; Hill AM; Wallace AL; Amis AA; Bull AM
    J Anat; 2008 Jan; 212(1):49-54. PubMed ID: 18031481
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Defining a safety margin for labral suture anchor insertion using the acetabular rim angle.
    Lertwanich P; Ejnisman L; Torry MR; Giphart JE; Philippon MJ
    Am J Sports Med; 2011 Jul; 39 Suppl():111S-6S. PubMed ID: 21709040
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Sensitivity analysis of permeability parameters of bovine nucleus pulposus obtained through inverse fitting of the nonlinear biphasic equation: effect of sampling strategy.
    Riches PE
    Comput Methods Biomech Biomed Engin; 2012; 15(1):29-36. PubMed ID: 21749275
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Depth- and strain-dependent mechanical and electromechanical properties of full-thickness bovine articular cartilage in confined compression.
    Chen AC; Bae WC; Schinagl RM; Sah RL
    J Biomech; 2001 Jan; 34(1):1-12. PubMed ID: 11425068
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age.
    Roth V; Mow VC
    J Bone Joint Surg Am; 1980 Oct; 62(7):1102-17. PubMed ID: 7430196
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Advances in Quantification of Meniscus Tensile Mechanics Including Nonlinearity, Yield, and Failure.
    Peloquin JM; Santare MH; Elliott DM
    J Biomech Eng; 2016 Feb; 138(2):021002. PubMed ID: 26720401
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Inversion of the acetabular labrum causes increased localized contact pressure on the femoral head: a biomechanical study.
    Wang X; Fukui K; Kaneuji A; Hirosaki K; Miyakawa H; Kawahara N
    Int Orthop; 2019 Jun; 43(6):1329-1336. PubMed ID: 30539222
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Study of the three-dimensional orientation of the labrum: its relations with the osseous acetabular rim.
    Bonneau N; Bouhallier J; Baylac M; Tardieu C; Gagey O
    J Anat; 2012 May; 220(5):504-13. PubMed ID: 22360458
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Effects of removal of the acetabular labrum in a sheep hip model.
    Miozzari HH; Clark JM; Jacob HA; von Rechenberg B; Nötzli HP
    Osteoarthritis Cartilage; 2004 May; 12(5):419-30. PubMed ID: 15094141
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Compressive biomechanical properties of human nasal septal cartilage.
    Richmon JD; Sage A; Wong WV; Chen AC; Sah RL; Watson D
    Am J Rhinol; 2006; 20(5):496-501. PubMed ID: 17063745
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Structure, strain and function of the transverse acetabular ligament.
    Löhe F; Eckstein F; Sauer T; Putz R
    Acta Anat (Basel); 1996; 157(4):315-23. PubMed ID: 9259881
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Mechanical and Biological Evaluation of Melt-Electrowritten Polycaprolactone Scaffolds for Acetabular Labrum Restoration.
    Santschi MXT; Huber S; Bujalka J; Imhof N; Leunig M; Ferguson SJ
    Cells; 2022 Oct; 11(21):. PubMed ID: 36359846
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The compressive strength of articular cartilage.
    Kerin AJ; Wisnom MR; Adams MA
    Proc Inst Mech Eng H; 1998; 212(4):273-80. PubMed ID: 9769695
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The nerve endings of the acetabular labrum.
    Kim YT; Azuma H
    Clin Orthop Relat Res; 1995 Nov; (320):176-81. PubMed ID: 7586824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.