BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11562216)

  • 1. Isotope effects and medium effects on sulfuryl transfer reactions.
    Hoff RH; Larsen P; Hengge AC
    J Am Chem Soc; 2001 Sep; 123(38):9338-44. PubMed ID: 11562216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical comparison of p-nitrophenyl phosphate and sulfate hydrolysis in aqueous solution: implications for enzyme-catalyzed sulfuryl transfer.
    Kamerlin SC
    J Org Chem; 2011 Nov; 76(22):9228-38. PubMed ID: 21981415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic studies of protein tyrosine phosphatases YopH and Cdc25A with m-nitrobenzyl phosphate.
    McCain DF; Grzyska PK; Wu L; Hengge AC; Zhang ZY
    Biochemistry; 2004 Jun; 43(25):8256-64. PubMed ID: 15209522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition-state structures for the native dual-specific phosphatase VHR and D92N and S131A mutants. Contributions to the driving force for catalysis.
    Hengge AC; Denu JM; Dixon JE
    Biochemistry; 1996 Jun; 35(22):7084-92. PubMed ID: 8679534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examination of the transition state of the low-molecular mass small tyrosine phosphatase 1. Comparisons with other protein phosphatases.
    Hengge AC; Zhao Y; Wu L; Zhang ZY
    Biochemistry; 1997 Jun; 36(25):7928-36. PubMed ID: 9201938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isotope effect studies on the calcineurin phosphoryl-transfer reaction: transition state structure and effect of calmodulin and Mn2+.
    Hengge AC; Martin BL
    Biochemistry; 1997 Aug; 36(33):10185-91. PubMed ID: 9254616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic origin of the increased rate of hydrolysis of phosphate and phosphorothioate esters in DMSO/water mixtures.
    Sorensen-Stowell K; Hengge AC
    J Org Chem; 2006 Sep; 71(19):7180-4. PubMed ID: 16958510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction.
    Catrina I; O'Brien PJ; Purcell J; Nikolic-Hughes I; Zalatan JG; Hengge AC; Herschlag D
    J Am Chem Soc; 2007 May; 129(17):5760-5. PubMed ID: 17411045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secondary 18O isotope effects as a tool for studying reactions of phosphate mono-, di-, and triesters.
    Cleland WW
    FASEB J; 1990 Aug; 4(11):2899-905. PubMed ID: 2199287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition state of the sulfuryl transfer reaction of estrogen sulfotransferase.
    Hoff RH; Czyryca PG; Sun M; Leyh TS; Hengge AC
    J Biol Chem; 2006 Oct; 281(41):30645-9. PubMed ID: 16899461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparisons of phosphorothioate with phosphate transfer reactions for a monoester, diester, and triester: isotope effect studies.
    Catrina IE; Hengge AC
    J Am Chem Soc; 2003 Jun; 125(25):7546-52. PubMed ID: 12812494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of general acid-base catalysis in transesterification of an RNA model phosphodiester studied with strongly basic catalysts.
    Corona-Martínez DO; Taran O; Yatsimirsky AK
    Org Biomol Chem; 2010 Feb; 8(4):873-80. PubMed ID: 20135046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition state differences in hydrolysis reactions of alkyl versus aryl phosphate monoester monoanions.
    Grzyska PK; Czyryca PG; Purcell J; Hengge AC
    J Am Chem Soc; 2003 Oct; 125(43):13106-11. PubMed ID: 14570483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered mechanisms of reactions of phosphate esters bridging a dinuclear metal center.
    Humphry T; Forconi M; Williams NH; Hengge AC
    J Am Chem Soc; 2004 Sep; 126(38):11864-9. PubMed ID: 15382921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen-18 leaving group kinetic isotope effects on the hydrolysis of nitrophenyl glycosides. 2. Lysozyme and beta-glucosidase: acid and alkaline hydrolysis.
    Rosenberg S; Kirsch JF
    Biochemistry; 1981 May; 20(11):3196-204. PubMed ID: 6788083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nature of the transition state of the protein-tyrosine phosphatase-catalyzed reaction.
    Hengge AC; Sowa GA; Wu L; Zhang ZY
    Biochemistry; 1995 Oct; 34(43):13982-7. PubMed ID: 7577995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition state analysis and requirement of Asp-262 general acid/base catalyst for full activation of dual-specificity phosphatase MKP3 by extracellular regulated kinase.
    Rigas JD; Hoff RH; Rice AE; Hengge AC; Denu JM
    Biochemistry; 2001 Apr; 40(14):4398-406. PubMed ID: 11284696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the reaction progress of calcineurin with Mn2+ and Mg2+.
    Martin BL; Jurado LA; Hengge AC
    Biochemistry; 1999 Mar; 38(11):3386-92. PubMed ID: 10079083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isotope effects in the study of phosphoryl and sulfuryl transfer reactions.
    Hengge AC
    Acc Chem Res; 2002 Feb; 35(2):105-12. PubMed ID: 11851388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of the phosphoryl transfer catalyzed by Yersinia protein-tyrosine phosphatase: a computational and isotope effect study.
    Czyryca PG; Hengge AC
    Biochim Biophys Acta; 2001 Jun; 1547(2):245-53. PubMed ID: 11410280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.