These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 11562257)

  • 21. Rapid Identification of Protein Kinase Phosphorylation Site Motifs Using Combinatorial Peptide Libraries.
    Miller CJ; Turk BE
    Methods Mol Biol; 2016; 1360():203-16. PubMed ID: 26501912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rate-determining steps for tyrosine phosphorylation by the kinase domain of v-fps.
    Wang C; Lee TR; Lawrence DS; Adams JA
    Biochemistry; 1996 Feb; 35(5):1533-9. PubMed ID: 8634284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discovery of substrate for type I signal peptidase SpsB from Staphylococcus aureus.
    Sharkov NA; Cai D
    J Biol Chem; 2002 Feb; 277(8):5796-803. PubMed ID: 11741926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of a novel peptide substrate of HSV-1 protease using substrate phage display.
    O'Boyle DR; Pokornowski KA; McCann PJ; Weinheimer SP
    Virology; 1997 Sep; 236(2):338-47. PubMed ID: 9325241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The one-bead two-compound assay for solid phase screening of combinatorial libraries.
    Meldal M
    Biopolymers; 2002; 66(2):93-100. PubMed ID: 12325159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phage display of functional human TNF-alpha converting enzyme catalytic domain: a rapid method for the production of stabilized proteolytic proteins for assay development and high-throughput screening.
    Chen Y; Diener K; Patel IR; Kawooya JK; Martin GA; Yamdagni P; Zhang X; Sandrasalphaa A; Sahasrabudhe S; Busch SJ
    J Biomol Screen; 2002 Oct; 7(5):433-40. PubMed ID: 14599359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a biologically significant DNA-binding peptide motif by use of a random phage display library.
    Cheng X; Kay BK; Juliano RL
    Gene; 1996 May; 171(1):1-8. PubMed ID: 8675015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substrate phage: selection of protease substrates by monovalent phage display.
    Matthews DJ; Wells JA
    Science; 1993 May; 260(5111):1113-7. PubMed ID: 8493554
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Utilization of multiple phage display libraries for the identification of dissimilar peptide motifs that bind to a B7-1 monoclonal antibody.
    De Ciechi PA; Devine CS; Lee SC; Howard SC; Olins PO; Caparon MH
    Mol Divers; 1996 Feb; 1(2):79-86. PubMed ID: 9237196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterisation of epitopes on human p53 using phage-displayed peptide libraries: insights into antibody-peptide interactions.
    Stephen CW; Helminen P; Lane DP
    J Mol Biol; 1995 Apr; 248(1):58-78. PubMed ID: 7537340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel beta-lactamase-random peptide fusion libraries for phage display selection of cancer cell-targeting agents suitable for enzyme prodrug therapy.
    Shukla GS; Krag DN
    J Drug Target; 2010 Feb; 18(2):115-24. PubMed ID: 19751096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the intrinsic kinase activity and substrate specificity of c-Abl and Bcr-Abl.
    Wu JJ; Phan H; Lam KS
    Bioorg Med Chem Lett; 1998 Sep; 8(17):2279-84. PubMed ID: 9873528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Origins of the specificity of tissue-type plasminogen activator.
    Ding L; Coombs GS; Strandberg L; Navre M; Corey DR; Madison EL
    Proc Natl Acad Sci U S A; 1995 Aug; 92(17):7627-31. PubMed ID: 7644467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of the proto-oncogene pim-1: kinase activity and substrate recognition sequence.
    Friedmann M; Nissen MS; Hoover DS; Reeves R; Magnuson NS
    Arch Biochem Biophys; 1992 Nov; 298(2):594-601. PubMed ID: 1416988
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient construction of a large collection of phage-displayed combinatorial peptide libraries.
    Scholle MD; Kehoe JW; Kay BK
    Comb Chem High Throughput Screen; 2005 Sep; 8(6):545-51. PubMed ID: 16178814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unique substrate specificity of anaplastic lymphoma kinase (ALK): development of phosphoacceptor peptides for the assay of ALK activity.
    Donella-Deana A; Marin O; Cesaro L; Gunby RH; Ferrarese A; Coluccia AM; Tartari CJ; Mologni L; Scapozza L; Gambacorti-Passerini C; Pinna LA
    Biochemistry; 2005 Jun; 44(23):8533-42. PubMed ID: 15938644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A peptide isolated by phage display binds to ICAM-1 and inhibits binding to LFA-1.
    Welply JK; Steininger CN; Caparon M; Michener ML; Howard SC; Pegg LE; Meyer DM; De Ciechi PA; Devine CS; Casperson GF
    Proteins; 1996 Nov; 26(3):262-70. PubMed ID: 8953648
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Designing subtilisin BPN' to cleave substrates containing dibasic residues.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1995 Oct; 34(41):13312-9. PubMed ID: 7577915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries.
    Tonikian R; Zhang Y; Boone C; Sidhu SS
    Nat Protoc; 2007; 2(6):1368-86. PubMed ID: 17545975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substrate specificities of catalytic fragments of protein tyrosine phosphatases (HPTP beta, LAR, and CD45) toward phosphotyrosylpeptide substrates and thiophosphotyrosylated peptides as inhibitors.
    Cho H; Krishnaraj R; Itoh M; Kitas E; Bannwarth W; Saito H; Walsh CT
    Protein Sci; 1993 Jun; 2(6):977-84. PubMed ID: 8318901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.