BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 11563689)

  • 21. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In the quest for stable rescuing mutants of p53: computational mutagenesis of flexible loop L1.
    Pan Y; Ma B; Venkataraghavan RB; Levine AJ; Nussinov R
    Biochemistry; 2005 Feb; 44(5):1423-32. PubMed ID: 15683227
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrating mutation data and structural analysis of the TP53 tumor-suppressor protein.
    Martin AC; Facchiano AM; Cuff AL; Hernandez-Boussard T; Olivier M; Hainaut P; Thornton JM
    Hum Mutat; 2002 Feb; 19(2):149-64. PubMed ID: 11793474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs.
    Joerger AC; Ang HC; Fersht AR
    Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15056-61. PubMed ID: 17015838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular evolution of the thermosensitive PAb1620 epitope of human p53 by DNA shuffling.
    Xirodimas DP; Lane DP
    J Biol Chem; 1999 Sep; 274(39):28042-9. PubMed ID: 10488156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2.
    Gorina S; Pavletich NP
    Science; 1996 Nov; 274(5289):1001-5. PubMed ID: 8875926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural effects of the L145Q, V157F, and R282W cancer-associated mutations in the p53 DNA-binding core domain.
    Calhoun S; Daggett V
    Biochemistry; 2011 Jun; 50(23):5345-53. PubMed ID: 21561095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrinsic Differences in Backbone Dynamics between Wild Type and DNA-Contact Mutants of the p53 DNA Binding Domain Revealed by Nuclear Magnetic Resonance Spectroscopy.
    Rasquinha JA; Bej A; Dutta S; Mukherjee S
    Biochemistry; 2017 Sep; 56(37):4962-4971. PubMed ID: 28836764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of transactivation capability and conformation of p53 temperature-dependent mutants and their reactivation by amifostine in yeast.
    Grochova D; Vankova J; Damborsky J; Ravcukova B; Smarda J; Vojtesek B; Smardova J
    Oncogene; 2008 Feb; 27(9):1243-52. PubMed ID: 17724467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel human p53 mutations that are toxic to yeast can enhance transactivation of specific promoters and reactivate tumor p53 mutants.
    Inga A; Resnick MA
    Oncogene; 2001 Jun; 20(26):3409-19. PubMed ID: 11423991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The N terminus of the murine p53 tumour suppressor is an independent regulatory domain affecting activation and thermostability.
    Hansen S; Lane DP; Midgley CA
    J Mol Biol; 1998 Jan; 275(4):575-88. PubMed ID: 9466932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new set of monoclonal antibodies directed to proline-rich and central regions of p53.
    Voeltzel T; Morel AP; Rostan MC; Ji J; Chiodino C; Ponchel F; Vigouroux J; Caron de Fromentel C; Soussi T; Ozturk M
    Hybrid Hybridomics; 2004 Oct; 23(5):287-92. PubMed ID: 15672606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disentangling the perturbational effects of amino acid substitutions in the DNA-binding domain of p53.
    Wacey AI; Cooper DN; Liney D; Hovig E; Krawczak M
    Hum Genet; 1999 Jan; 104(1):15-22. PubMed ID: 10071187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity.
    Petty TJ; Emamzadah S; Costantino L; Petkova I; Stavridi ES; Saven JG; Vauthey E; Halazonetis TD
    EMBO J; 2011 Jun; 30(11):2167-76. PubMed ID: 21522129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature-sensitive mutants of p53 associated with human carcinoma of the lung.
    Medcalf EA; Takahashi T; Chiba I; Minna J; Milner J
    Oncogene; 1992 Jan; 7(1):71-6. PubMed ID: 1741167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stabilising the DNA-binding domain of p53 by rational design of its hydrophobic core.
    Khoo KH; Joerger AC; Freund SM; Fersht AR
    Protein Eng Des Sel; 2009 Jul; 22(7):421-30. PubMed ID: 19515728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of mdm2 (mouse double minute 2) protein are modified in human cancers.
    Craig AL; Burch L; Vojtesek B; Mikutowska J; Thompson A; Hupp TR
    Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):133-41. PubMed ID: 10432310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature sensitivity for conformation is an intrinsic property of wild-type p53.
    Hainaut P; Butcher S; Milner J
    Br J Cancer; 1995 Feb; 71(2):227-31. PubMed ID: 7841034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies.
    Signorelli S; Santini S; Yamada T; Bizzarri AR; Beattie CW; Cannistraro S
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):910-921. PubMed ID: 28126403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conformational Entropy as a Determinant of the Thermodynamic Stability of the p53 Core Domain.
    Bej A; Rasquinha JA; Mukherjee S
    Biochemistry; 2018 Nov; 57(44):6265-6269. PubMed ID: 30362715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.