BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 11563694)

  • 1. The effect of inorganic phosphate on the activity of bacterial ribokinase.
    Maj MC; Gupta RS
    J Protein Chem; 2001 Feb; 20(2):139-44. PubMed ID: 11563694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pentavalent ions dependency is a conserved property of adenosine kinase from diverse sources: identification of a novel motif implicated in phosphate and magnesium ion binding and substrate inhibition.
    Maj MC; Singh B; Gupta RS
    Biochemistry; 2002 Mar; 41(12):4059-69. PubMed ID: 11900549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a catalytic Mg2+ ion and effect of phosphate on the activity of Escherichia coli phosphofructokinase-2: regulatory properties of a ribokinase family member.
    Parducci RE; Cabrera R; Baez M; Guixé V
    Biochemistry; 2006 Aug; 45(30):9291-9. PubMed ID: 16866375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylated derivatives that activate or inhibit mammalian adenosine kinase provide insights into the role of pentavalent ions in AK catalysis.
    Park J; Singh B; Maj MC; Gupta RS
    Protein J; 2004 Feb; 23(2):167-77. PubMed ID: 15106882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of human ribokinase and comparison of its properties with E. coli ribokinase and human adenosine kinase.
    Park J; van Koeverden P; Singh B; Gupta RS
    FEBS Lett; 2007 Jul; 581(17):3211-6. PubMed ID: 17585908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An uncharacterized member of the ribokinase family in Thermococcus kodakarensis exhibits myo-inositol kinase activity.
    Sato T; Fujihashi M; Miyamoto Y; Kuwata K; Kusaka E; Fujita H; Miki K; Atomi H
    J Biol Chem; 2013 Jul; 288(29):20856-20867. PubMed ID: 23737529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A ribokinase family conserved monovalent cation binding site enhances the MgATP-induced inhibition in E. coli phosphofructokinase-2.
    Baez M; Cabrera R; Pereira HM; Blanco A; Villalobos P; Ramírez-Sarmiento CA; Caniuguir A; Guixé V; Garratt RC; Babul J
    Biophys J; 2013 Jul; 105(1):185-93. PubMed ID: 23823238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification, characterization, and crystallization of Escherichia coli ribokinase.
    Sigrell JA; Cameron AD; Jones TA; Mowbray SL
    Protein Sci; 1997 Nov; 6(11):2474-6. PubMed ID: 9385653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rat liver ATP-sulfurylase: purification, kinetic characterization, and interaction with arsenate, selenate, phosphate, and other inorganic oxyanions.
    Yu M; Martin RL; Jain S; Chen LJ; Segel IH
    Arch Biochem Biophys; 1989 Feb; 269(1):156-74. PubMed ID: 2537056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the Plant Ribokinase and Discovery of a Role for Arabidopsis Ribokinase in Nucleoside Metabolism.
    Riggs JW; Rockwell NC; Cavales PC; Callis J
    J Biol Chem; 2016 Oct; 291(43):22572-22582. PubMed ID: 27601466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning, expression and characterization of ribokinase of Leishmania major.
    Ogbunude PO; Lamour N; Barrett MP
    Acta Biochim Biophys Sin (Shanghai); 2007 Jun; 39(6):462-6. PubMed ID: 17558452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pentavalent ions dependency of mammalian adenosine kinase.
    Hao W; Gupta RS
    Biochem Mol Biol Int; 1996 Apr; 38(5):889-99. PubMed ID: 9132158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine kinase and ribokinase--the RK family of proteins.
    Park J; Gupta RS
    Cell Mol Life Sci; 2008 Sep; 65(18):2875-96. PubMed ID: 18560757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of Escherichia coli ribokinase in complex with ribose and dinucleotide determined to 1.8 A resolution: insights into a new family of kinase structures.
    Sigrell JA; Cameron AD; Jones TA; Mowbray SL
    Structure; 1998 Feb; 6(2):183-93. PubMed ID: 9519409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induced fit on sugar binding activates ribokinase.
    Sigrell JA; Cameron AD; Mowbray SL
    J Mol Biol; 1999 Jul; 290(5):1009-18. PubMed ID: 10438599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of Thermus thermophilus 2-Keto-3-deoxygluconate kinase: evidence for recognition of an open chain substrate.
    Ohshima N; Inagaki E; Yasuike K; Takio K; Tahirov TH
    J Mol Biol; 2004 Jul; 340(3):477-89. PubMed ID: 15210349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of arsenate on inorganic phosphate transport in Escherichia coli.
    Willsky GR; Malamy MH
    J Bacteriol; 1980 Oct; 144(1):366-74. PubMed ID: 6998959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribokinase from E. coli: expression, purification, and substrate specificity.
    Chuvikovsky DV; Esipov RS; Skoblov YS; Chupova LA; Muravyova TI; Miroshnikov AI; Lapinjoki S; Mikhailopulo IA
    Bioorg Med Chem; 2006 Sep; 14(18):6327-32. PubMed ID: 16784868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenosine-AMP exchange activity is an integral part of the mammalian adenosine kinase.
    Gupta RS
    Biochem Mol Biol Int; 1996 Jun; 39(3):493-502. PubMed ID: 8828800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dihydroxyacetone kinase of Escherichia coli utilizes a phosphoprotein instead of ATP as phosphoryl donor.
    Gutknecht R; Beutler R; Garcia-Alles LF; Baumann U; Erni B
    EMBO J; 2001 May; 20(10):2480-6. PubMed ID: 11350937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.