These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11563758)

  • 21. Elliptical contact of thin biphasic cartilage layers: exact solution for monotonic loading.
    Argatov I; Mishuris G
    J Biomech; 2011 Feb; 44(4):759-61. PubMed ID: 21093864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finite element algorithm for frictionless contact of porous permeable media under finite deformation and sliding.
    Ateshian GA; Maas S; Weiss JA
    J Biomech Eng; 2010 Jun; 132(6):061006. PubMed ID: 20887031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of inserting a pressensor film into articular joints on the actual contact mechanics.
    Wu JZ; Herzog W; Epstein M
    J Biomech Eng; 1998 Oct; 120(5):655-9. PubMed ID: 10412445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of grid dimensions on finite element models of an articular surface.
    Galbraith PC; Bryant JT
    J Biomech; 1989; 22(4):385-93. PubMed ID: 2745473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of various contact algorithms for poroelastic tissues.
    Galbusera F; Bashkuev M; Wilke HJ; Shirazi-Adl A; Schmidt H
    Comput Methods Biomech Biomed Engin; 2014; 17(12):1323-34. PubMed ID: 23244496
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Finite element analysis of the meniscectomised tibio-femoral joint: implementation of advanced articular cartilage models.
    Mattei L; Campioni E; Accardi MA; Dini D
    Comput Methods Biomech Biomed Engin; 2014; 17(14):1553-71. PubMed ID: 23452160
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Load sharing between solid and fluid phases in articular cartilage: II--Comparison of experimental results and u-p finite element predictions.
    Mukherjee N; Wayne JS
    J Biomech Eng; 1998 Oct; 120(5):620-4. PubMed ID: 10412440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical response of lumbar facet joints under follower preload: a finite element study.
    Du CF; Yang N; Guo JC; Huang YP; Zhang C
    BMC Musculoskelet Disord; 2016 Mar; 17():126. PubMed ID: 26980002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the hip joint with biphasic layers.
    Li J; Stewart TD; Jin Z; Wilcox RK; Fisher J
    J Biomech; 2013 Jun; 46(10):1641-7. PubMed ID: 23664238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of Robotic Manipulators to Study Diarthrodial Joint Function.
    Debski RE; Yamakawa S; Musahl V; Fujie H
    J Biomech Eng; 2017 Feb; 139(2):. PubMed ID: 28056127
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A finite element analysis of the indentation stress-relaxation response of linear biphasic articular cartilage.
    Spilker RL; Suh JK; Mow VC
    J Biomech Eng; 1992 May; 114(2):191-201. PubMed ID: 1602762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of different methods in predicting static pressure distribution in articulating joints.
    Li G; Sakamoto M; Chao EY
    J Biomech; 1997 Jun; 30(6):635-8. PubMed ID: 9165398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis.
    Li G; Lopez O; Rubash H
    J Biomech Eng; 2001 Aug; 123(4):341-6. PubMed ID: 11563759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Robust and general method for determining surface fluid flow boundary conditions in articular cartilage contact mechanics modeling.
    Pawaskar SS; Fisher J; Jin Z
    J Biomech Eng; 2010 Mar; 132(3):031001. PubMed ID: 20459189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of friction on the unconfined compressive response of articular cartilage: a finite element analysis.
    Spilker RL; Suh JK; Mow VC
    J Biomech Eng; 1990 May; 112(2):138-46. PubMed ID: 2345443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Articular joint mechanics with biphasic cartilage layers under dynamic loading.
    Wu JZ; Herzog W; Epstein M
    J Biomech Eng; 1998 Feb; 120(1):77-84. PubMed ID: 9675684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A finite element model of an idealized diarthrodial joint to investigate the effects of variation in the mechanical properties of the tissues.
    Dar FH; Aspden RM
    Proc Inst Mech Eng H; 2003; 217(5):341-8. PubMed ID: 14558646
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biphasic Analysis of Cartilage Stresses in the Patellofemoral Joint.
    Jones B; Hung CT; Ateshian G
    J Knee Surg; 2016 Feb; 29(2):92-8. PubMed ID: 26641078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The contribution of the glenoid labrum to glenohumeral stability under physiological joint loading using finite element analysis.
    Klemt C; Nolte D; Grigoriadis G; Di Federico E; Reilly P; Bull AMJ
    Comput Methods Biomech Biomed Engin; 2017 Nov; 20(15):1613-1622. PubMed ID: 29106800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.