These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11563758)

  • 41. Discrete element analysis in musculoskeletal biomechanics.
    Chao EY; Volokh KY; Yoshida H; Shiba N; Ide T
    Mol Cell Biomech; 2010 Sep; 7(3):175-92. PubMed ID: 21141680
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications.
    Hou JS; Holmes MH; Lai WM; Mow VC
    J Biomech Eng; 1989 Feb; 111(1):78-87. PubMed ID: 2747237
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Equivalence between short-time biphasic and incompressible elastic material responses.
    Ateshian GA; Ellis BJ; Weiss JA
    J Biomech Eng; 2007 Jun; 129(3):405-12. PubMed ID: 17536908
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Validation of a finite element model of the human elbow for determining cartilage contact mechanics.
    Willing RT; Lalone EA; Shannon H; Johnson JA; King GJ
    J Biomech; 2013 Jun; 46(10):1767-71. PubMed ID: 23664239
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.
    Mithraratne K; Ho H; Hunter PJ; Fernandez JW
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A study of preconditioned Krylov subspace methods with reordering for linear systems from a biphasic v-p finite element formulation.
    Yang T; Spilker RL
    Comput Methods Biomech Biomed Engin; 2007 Feb; 10(1):13-24. PubMed ID: 18651268
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A linear viscoelastic biphasic model for soft tissues based on the Theory of Porous Media.
    Ehlers W; Markert B
    J Biomech Eng; 2001 Oct; 123(5):418-24. PubMed ID: 11601726
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An analytical model of joint contact.
    Eberhardt AW; Keer LM; Lewis JL; Vithoontien V
    J Biomech Eng; 1990 Nov; 112(4):407-13. PubMed ID: 2273867
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study.
    Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A biphasic finite element model of in vitro plowing tests of the temporomandibular joint disc.
    Spilker RL; Nickel JC; Iwasaki LR
    Ann Biomed Eng; 2009 Jun; 37(6):1152-64. PubMed ID: 19350392
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage.
    Huang CY; Mow VC; Ateshian GA
    J Biomech Eng; 2001 Oct; 123(5):410-7. PubMed ID: 11601725
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of geometry on the stress distribution in joints--a finite element analysis.
    Eckstein F; Merz B; Schmid P; Putz R
    Anat Embryol (Berl); 1994 Jun; 189(6):545-52. PubMed ID: 7978358
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of mechanical loading histories in the development of diarthrodial joints.
    Carter DR; Wong M
    J Orthop Res; 1988; 6(6):804-16. PubMed ID: 3171761
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hemiarthroplasty of hip joint: An experimental validation using porcine acetabulum.
    Pawaskar SS; Grosland NM; Ingham E; Fisher J; Jin Z
    J Biomech; 2011 May; 44(8):1536-42. PubMed ID: 21439570
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Joint surface modeling with thin-plate splines.
    Boyd SK; Ronsky JL; Lichti DD; Salkauskas K; Chapman MA
    J Biomech Eng; 1999 Oct; 121(5):525-32. PubMed ID: 10529921
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo cartilage contact deformation of human ankle joints under full body weight.
    Wan L; de Asla RJ; Rubash HE; Li G
    J Orthop Res; 2008 Aug; 26(8):1081-9. PubMed ID: 18327792
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hyaluronan supplementation as a mechanical regulator of cartilage tissue development under joint-kinematic-mimicking loading.
    Wu Y; Stoddart MJ; Wuertz-Kozak K; Grad S; Alini M; Ferguson SJ
    J R Soc Interface; 2017 Aug; 14(133):. PubMed ID: 28768880
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computational method for determination of bone and joint loads using bone density distributions.
    Fischer KJ; Jacobs CR; Carter DR
    J Biomech; 1995 Sep; 28(9):1127-35. PubMed ID: 7559684
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Glenohumeral mechanics: a study of articular geometry, contact, and kinematics.
    Kelkar R; Wang VM; Flatow EL; Newton PM; Ateshian GA; Bigliani LU; Pawluk RJ; Mow VC
    J Shoulder Elbow Surg; 2001; 10(1):73-84. PubMed ID: 11182740
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of the u-p finite element method to the study of articular cartilage.
    Wayne JS; Woo SL; Kwan MK
    J Biomech Eng; 1991 Nov; 113(4):397-403. PubMed ID: 1762436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.