BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 11563849)

  • 41. Role of the Met-Tyr-Trp cross-link in Mycobacterium tuberculosis catalase-peroxidase (KatG) as revealed by KatG(M255I).
    Ghiladi RA; Medzihradszky KF; Ortiz de Montellano PR
    Biochemistry; 2005 Nov; 44(46):15093-105. PubMed ID: 16285713
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vivo role of catalase-peroxidase in synechocystis sp. strain PCC 6803.
    Tichy M; Vermaas W
    J Bacteriol; 1999 Mar; 181(6):1875-82. PubMed ID: 10074082
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conformational differences in Mycobacterium tuberculosis catalase-peroxidase KatG and its S315T mutant revealed by resonance Raman spectroscopy.
    Kapetanaki S; Chouchane S; Girotto S; Yu S; Magliozzo RS; Schelvis JP
    Biochemistry; 2003 Apr; 42(13):3835-45. PubMed ID: 12667074
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reactions of the class II peroxidases, lignin peroxidase and Arthromyces ramosus peroxidase, with hydrogen peroxide. Catalase-like activity, compound III formation, and enzyme inactivation.
    Hiner AN; Hernández-Ruiz J; Rodríguez-López JN; García-Cánovas F; Brisset NC; Smith AT; Arnao MB; Acosta M
    J Biol Chem; 2002 Jul; 277(30):26879-85. PubMed ID: 11983689
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prosthetic heme modification during halide ion oxidation. Demonstration of chloride oxidation by horseradish peroxidase.
    Huang L; Wojciechowski G; Ortiz de Montellano PR
    J Am Chem Soc; 2005 Apr; 127(15):5345-53. PubMed ID: 15826172
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rapid formation of compound II and a tyrosyl radical in the Y229F mutant of Mycobacterium tuberculosis catalase-peroxidase disrupts catalase but not peroxidase function.
    Yu S; Girotto S; Zhao X; Magliozzo RS
    J Biol Chem; 2003 Nov; 278(45):44121-7. PubMed ID: 12944408
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Properties of catalase-peroxidase lacking its C-terminal domain.
    Baker RD; Cook CO; Goodwin DC
    Biochem Biophys Res Commun; 2004 Jul; 320(3):833-9. PubMed ID: 15240123
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of novel targets of cyanobacterial glutaredoxin.
    Li M; Yang Q; Zhang L; Li H; Cui Y; Wu Q
    Arch Biochem Biophys; 2007 Feb; 458(2):220-8. PubMed ID: 17239812
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction with the Redox Cofactor MYW and Functional Role of a Mobile Arginine in Eukaryotic Catalase-Peroxidase.
    Gasselhuber B; Graf MM; Jakopitsch C; Zamocky M; Nicolussi A; Furtmüller PG; Oostenbrink C; Carpena X; Obinger C
    Biochemistry; 2016 Jun; 55(25):3528-41. PubMed ID: 27293030
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The catalytic role of the distal site asparagine-histidine couple in catalase-peroxidases.
    Jakopitsch C; Auer M; Regelsberger G; Jantschko W; Furtmüller PG; Rüker F; Obinger C
    Eur J Biochem; 2003 Mar; 270(5):1006-13. PubMed ID: 12603334
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetics of interconversion of ferrous enzymes, compound II and compound III, of wild-type synechocystis catalase-peroxidase and Y249F: proposal for the catalatic mechanism.
    Jakopitsch C; Wanasinghe A; Jantschko W; Furtmüller PG; Obinger C
    J Biol Chem; 2005 Mar; 280(10):9037-42. PubMed ID: 15637065
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Substitution of strictly conserved Y111 in catalase-peroxidases: Impact of remote interdomain contacts on active site structure and catalytic performance.
    Moore RL; Cook CO; Williams R; Goodwin DC
    J Inorg Biochem; 2008 Sep; 102(9):1819-24. PubMed ID: 18635265
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Formation of reactive halide species by myeloperoxidase and eosinophil peroxidase.
    Spalteholz H; Panasenko OM; Arnhold J
    Arch Biochem Biophys; 2006 Jan; 445(2):225-34. PubMed ID: 16111649
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modulation of the activities of catalase-peroxidase HPI of Escherichia coli by site-directed mutagenesis.
    Hillar A; Peters B; Pauls R; Loboda A; Zhang H; Mauk AG; Loewen PC
    Biochemistry; 2000 May; 39(19):5868-75. PubMed ID: 10801338
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Roles for Arg426 and Trp111 in the modulation of NADH oxidase activity of the catalase-peroxidase KatG from Burkholderia pseudomallei inferred from pH-induced structural changes.
    Carpena X; Wiseman B; Deemagarn T; Herguedas B; Ivancich A; Singh R; Loewen PC; Fita I
    Biochemistry; 2006 Apr; 45(16):5171-9. PubMed ID: 16618106
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Peroxidase-catalyzed halide ion oxidation.
    Dunford HB
    Redox Rep; 2000; 5(4):169-71. PubMed ID: 10994869
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Occurrence, phylogeny, structure, and function of catalases and peroxidases in cyanobacteria.
    Bernroitner M; Zamocky M; Furtmüller PG; Peschek GA; Obinger C
    J Exp Bot; 2009; 60(2):423-40. PubMed ID: 19129167
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cyanide binding to hexacoordinate cyanobacterial hemoglobins: hydrogen-bonding network and heme pocket rearrangement in ferric H117A Synechocystis hemoglobin.
    Vu BC; Nothnagel HJ; Vuletich DA; Falzone CJ; Lecomte JT
    Biochemistry; 2004 Oct; 43(39):12622-33. PubMed ID: 15449952
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Catalase-peroxidase activity of iron(III)-TAML activators of hydrogen peroxide.
    Ghosh A; Mitchell DA; Chanda A; Ryabov AD; Popescu DL; Upham EC; Collins GJ; Collins TJ
    J Am Chem Soc; 2008 Nov; 130(45):15116-26. PubMed ID: 18928252
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Roles of water in heme peroxidase and catalase mechanisms.
    Jones P
    J Biol Chem; 2001 Apr; 276(17):13791-6. PubMed ID: 11278901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.