These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 1156390)

  • 1. The aerobic metabolism of cyclohexanecarboxylic acid by Acinetobacter anitratum.
    Rho EM; Evans WC
    Biochem J; 1975 Apr; 148(1):11-5. PubMed ID: 1156390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate by "Syntrophus aciditrophicus" strain SB in syntrophic association with H(2)-using microorganisms.
    Elshahed MS; Bhupathiraju VK; Wofford NQ; Nanny MA; McInerney MJ
    Appl Environ Microbiol; 2001 Apr; 67(4):1728-38. PubMed ID: 11282627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The microbial degradation of cyclohexanecarboxylic acid by a beta-oxidation pathway with simultaneous induction to the utilization of benzoate.
    Blakley ER
    Can J Microbiol; 1978 Jul; 24(7):847-55. PubMed ID: 679070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of cyclohexane carboxylic acid by Alcaligenes strain W1.
    Taylor DG; Trudgill PW
    J Bacteriol; 1978 May; 134(2):401-11. PubMed ID: 207665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The metabolism of benzoate by Moraxella species through anaerobic nitrate respiration. Evidence for a reductive pathway.
    Williams RJ; Evans WC
    Biochem J; 1975 Apr; 148(1):1-10. PubMed ID: 1156389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of biotin-vitamers from pimelic acid and coenzyme A by cell-free extracts of various bacteria.
    Izumi Y; Morita H; Sato K; Tani Y; Ogata K
    Biochim Biophys Acta; 1972 Mar; 264(1):210-3. PubMed ID: 4623286
    [No Abstract]   [Full Text] [Related]  

  • 7. Isolation and properties of a particulate fraction for the desaturation of palmitic acid from Alcaligenes faecalis.
    Kshirsagar SS; Nair PM
    Biochim Biophys Acta; 1979 Sep; 574(3):369-78. PubMed ID: 39619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The formation of bile acids from cholesterol. The conversion of 5-beta-cholestane-3-alpha,7-alpha-triol-26-oic acid to cholic acid via 5-beta-cholestane-3-alpha,7-alpha,12-alpha, 24-xi-tetraol-26-oic acid I by rat liver.
    Masui T; Staple E
    J Biol Chem; 1966 Sep; 241(17):3889-93. PubMed ID: 5920800
    [No Abstract]   [Full Text] [Related]  

  • 9. Anaerobic degradation of pimelate by newly isolated denitrifying bacteria.
    Gallus C; Schink B
    Microbiology (Reading); 1994 Feb; 140 ( Pt 2)():409-16. PubMed ID: 8180704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The metabolism of aromatic compounds by Rhodopseudomonas palustris. A new, reductive, method of aromatic ring metabolism.
    Dutton PL; Evans WC
    Biochem J; 1969 Jul; 113(3):525-36. PubMed ID: 5807211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclohexane carboxylate and benzoate formation from crotonate in Syntrophus aciditrophicus.
    Mouttaki H; Nanny MA; McInerney MJ
    Appl Environ Microbiol; 2007 Feb; 73(3):930-8. PubMed ID: 17158621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The photometabolism of benzoic acid by Rhodopseudomonas palustris: a new pathway of aromatic ring metabolism.
    Dutton PL; Evans WC
    Biochem J; 1968 Sep; 109(2):5P-6P. PubMed ID: 5679383
    [No Abstract]   [Full Text] [Related]  

  • 13. Regulation of fatty acid biosynthesis in the hydrocarbon oxidizing microorganism, Acinetobacter sp.
    Sampson KL; Finnerty WR
    Arch Microbiol; 1974; 99(3):203-20. PubMed ID: 4433205
    [No Abstract]   [Full Text] [Related]  

  • 14. Intracellular localization and some properties of the system in guinea pig liver responsible for the aromatization of cyclohexanecarboxylic acid to hippuric acid.
    Svardal AM; Scheline RR
    Mol Cell Biochem; 1985 Jan; 65(2):107-15. PubMed ID: 3982394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of benzoic acid by bacteria: 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid is an intermediate in the formation of catechol.
    Reiner AM
    J Bacteriol; 1971 Oct; 108(1):89-94. PubMed ID: 4399343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of colloidal iron on the respiration of a species of the genus Acinetobacter.
    Rae IC; Celo JS
    Appl Microbiol; 1975 Jun; 29(6):837-40. PubMed ID: 239632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Metabolism of DL-trans-2-dimethylamino-1-phenyl-cyclohex-3-ene-trans-1-carboxylic acid ester hydrochloride (Tilidine HC1). 3. Renal elimination of metabolites in the rat, dog and man].
    Vollmer KO; Hodenberg AV
    Arzneimittelforschung; 1977; 27(9):1707-13. PubMed ID: 21670
    [No Abstract]   [Full Text] [Related]  

  • 18. Anaerobic Metabolism of Cyclohex-1-Ene-1-Carboxylate, a Proposed Intermediate of Benzoate Degradation, by Rhodopseudomonas palustris.
    Perrotta JA; Harwood CS
    Appl Environ Microbiol; 1994 Jun; 60(6):1775-82. PubMed ID: 16349272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm.
    Bafor M; Smith MA; Jonsson L; Stobart K; Stymne S
    Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):507-14. PubMed ID: 1747126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The metabolism of quinate by Acinetobacter calco-aceticus.
    Tresguerres ME; De Torrontegui G; Cánovas JL
    Arch Mikrobiol; 1970; 70(2):110-8. PubMed ID: 5429630
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.