BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

981 related articles for article (PubMed ID: 11563977)

  • 21. The interaction of arylazido ubiquinone derivative with mitochondrial ubiquinol-cytochrome c reductase.
    Yu L; Yu CA
    J Biol Chem; 1982 Sep; 257(17):10215-21. PubMed ID: 6286644
    [No Abstract]   [Full Text] [Related]  

  • 22. Contribution of nitric oxide, superoxide anion, and peroxynitrite to activation of mitochondrial apoptotic signaling in hippocampal CA3 subfield following experimental temporal lobe status epilepticus.
    Chuang YC; Chen SD; Liou CW; Lin TK; Chang WN; Chan SH; Chang AY
    Epilepsia; 2009 Apr; 50(4):731-46. PubMed ID: 19178557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein-ubiquinone interaction in bovine heart mitochondrial succinate-cytochrome c reductase. Synthesis and biological properties of fluorine substituted ubiquinone derivatives.
    Yang F; Yu L; He DY; Yu CA
    J Biol Chem; 1991 Nov; 266(31):20863-9. PubMed ID: 1657937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclosporine A-induced nitration of tyrosine 34 MnSOD in endothelial cells: role of mitochondrial superoxide.
    Redondo-Horcajo M; Romero N; Martínez-Acedo P; Martínez-Ruiz A; Quijano C; Lourenço CF; Movilla N; Enríquez JA; Rodríguez-Pascual F; Rial E; Radi R; Vázquez J; Lamas S
    Cardiovasc Res; 2010 Jul; 87(2):356-65. PubMed ID: 20106845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction between succinate dehydrogenase and ubiquinone-binding protein from succinate-ubiquinone reductase.
    Yu L; Yu CA
    Biochim Biophys Acta; 1980 Nov; 593(1):24-38. PubMed ID: 7426645
    [No Abstract]   [Full Text] [Related]  

  • 26. Inhibition of succinate:ubiquinone reductase and decrease of ubiquinol in nephrotoxic cysteine S-conjugate-induced oxidative cell injury.
    van de Water B; Zoeteweij JP; de Bont HJ; Nagelkerke JF
    Mol Pharmacol; 1995 Nov; 48(5):928-37. PubMed ID: 7476924
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peroxynitrite formation in nitric oxide-exposed submitochondrial particles: detection, oxidative damage and catalytic removal by Mn-porphyrins.
    Valez V; Cassina A; Batinic-Haberle I; Kalyanaraman B; Ferrer-Sueta G; Radi R
    Arch Biochem Biophys; 2013 Jan; 529(1):45-54. PubMed ID: 23142682
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electron-transfer complexes of Ascaris suum muscle mitochondria. III. Composition and fumarate reductase activity of complex II.
    Kita K; Takamiya S; Furushima R; Ma YC; Suzuki H; Ozawa T; Oya H
    Biochim Biophys Acta; 1988 Sep; 935(2):130-40. PubMed ID: 2843227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of electron transfer in the cytochrome b-c, segment of the mitochondrial respiratory chain by a synthetic analogue of ubiquinone.
    Trumpower BL; Haggerty JG
    J Bioenerg Biomembr; 1980 Aug; 12(3-4):151-64. PubMed ID: 6260766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether.
    Suzuki H; Wakai M; Ozawa T
    Biochem Int; 1986 Aug; 13(2):351-7. PubMed ID: 3094534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and properties of a mitochondrial protein that converts succinate dehydrogenase into succinate-ubiquinone oxidoreductase.
    Yu CA; Yu L
    Biochemistry; 1980 Jul; 19(15):3579-85. PubMed ID: 6250572
    [No Abstract]   [Full Text] [Related]  

  • 33. Effect of iron deficiency on succinate- and NADH-ubiquinone oxidoreductases in skeletal muscle mitochondria.
    Ackrell BA; Maguire JJ; Dallman PR; Kearney EB
    J Biol Chem; 1984 Aug; 259(16):10053-9. PubMed ID: 6432778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei.
    Beattie DS; Obungu VH; Kiaira JK
    Mol Biochem Parasitol; 1994 Mar; 64(1):87-94. PubMed ID: 8078526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The inhibitory effect of extracts of cigarette tar on electron transport of mitochondria and submitochondrial particles.
    Pryor WA; Arbour NC; Upham B; Church DF
    Free Radic Biol Med; 1992; 12(5):365-72. PubMed ID: 1317324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dicyclohexylcarbodiimide inhibition of succinate- and ubiquinol-cytochrome c reductase in beef heart mitochondria.
    Degli Esposti M; Parenti-Castelli G; Lenaz G
    Ital J Biochem; 1981; 30(6):453-63. PubMed ID: 6277826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of peroxynitrite produced via mitochondrial nitric oxide synthesis during Ca
    Gerdes HJ; Yang M; Heisner JS; Camara AKS; Stowe DF
    Biochim Biophys Acta Bioenerg; 2020 Dec; 1861(12):148290. PubMed ID: 32828729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis.
    Rouslin W
    Am J Physiol; 1983 Jun; 244(6):H743-8. PubMed ID: 6305212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of mitochondrial electron transport by peroxynitrite.
    Radi R; Rodriguez M; Castro L; Telleri R
    Arch Biochem Biophys; 1994 Jan; 308(1):89-95. PubMed ID: 8311480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on the succinate dehydrogenating system. Isolation and properties of the mitochondrial succinate-ubiquinone reductase.
    Tushurashvili PR; Gavrikova EV; Ledenev AN; Vinogradov AD
    Biochim Biophys Acta; 1985 Sep; 809(2):145-59. PubMed ID: 2994719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 50.