These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11564129)

  • 1. Melatonin increases pial artery tone and decreases the lower limit of cerebral blood flow autoregulation.
    Régrigny O; Delagrange P; Scalbert E; Atkinson J; Chillon JM
    Fundam Clin Pharmacol; 2001 Aug; 15(4):233-8. PubMed ID: 11564129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melatonin improves cerebral circulation security margin in rats.
    Régrigny O; Delagrange P; Scalbert E; Atkinson J; Lartaud-Idjouadiene I
    Am J Physiol; 1998 Jul; 275(1):H139-44. PubMed ID: 9688906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of melatonin on rat pial arteriolar diameter in vivo.
    Régrigny O; Delagrange P; Scalbert E; Lartaud-Idjouadiene I; Atkinson J; Chillon JM
    Br J Pharmacol; 1999 Aug; 127(7):1666-70. PubMed ID: 10455324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral arteriolar structure and function in pinealectomized rats.
    Régrigny O; Dupuis F; Atkinson J; Limiñana P; Scalbert E; Delagrange P; Chillon JM
    Am J Physiol Heart Circ Physiol; 2001 Oct; 281(4):H1476-80. PubMed ID: 11557535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of adenosine A(2B) receptors in vasodilation of rat pial artery and cerebral blood flow autoregulation.
    Shin HK; Shin YW; Hong KW
    Am J Physiol Heart Circ Physiol; 2000 Feb; 278(2):H339-44. PubMed ID: 10666062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rat pial microvascular responses to melatonin during bilateral common carotid artery occlusion and reperfusion.
    Lapi D; Vagnani S; Cardaci E; Paterni M; Colantuoni A
    J Pineal Res; 2011 Aug; 51(1):136-44. PubMed ID: 21470301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melatonin directly constricts rat cerebral arteries through modulation of potassium channels.
    Geary GG; Krause DN; Duckles SP
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1530-6. PubMed ID: 9321846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of treatment with melatonin on cerebral circulation in old rats.
    Dupuis F; Régrigny O; Atkinson J; Limiñana P; Delagrange P; Scalbert E; Chillon JM
    Br J Pharmacol; 2004 Feb; 141(3):399-406. PubMed ID: 14718260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of estrogen on cerebral blood flow and pial microvasculature in rabbits.
    Littleton-Kearney MT; Agnew DM; Traystman RJ; Hurn PD
    Am J Physiol Heart Circ Physiol; 2000 Sep; 279(3):H1208-14. PubMed ID: 10993786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation.
    Larsen FS; Olsen KS; Hansen BA; Paulson OB; Knudsen GM
    Stroke; 1994 Oct; 25(10):1985-8. PubMed ID: 7916502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of nitric oxide in the CBF autoregulation during acute stage after subarachnoid haemorrhage in rat pial artery.
    Cho HG; Shin HK; Shin YW; Lee JH; Hong KW
    Fundam Clin Pharmacol; 2003 Oct; 17(5):563-73. PubMed ID: 14703717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disturbances in autoregulatory responses of rat pial arteries by sulfonylureas.
    Lee WS; Kwon YJ; Yu SS; Rhim BY; Hong KW
    Life Sci; 1993; 52(19):1527-34. PubMed ID: 8483381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical NOS inhibition raises the lower limit of cerebral blood flow-arterial pressure autoregulation.
    Jones SC; Radinsky CR; Furlan AJ; Chyatte D; Perez-Trepichio AD
    Am J Physiol; 1999 Apr; 276(4):H1253-62. PubMed ID: 10199850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of alcohol infusion on smoking-induced cerebrovascular changes in rat in vivo.
    Iida M; Iida H; Fujiwara H; Dohi S
    Alcohol; 2003 Jul; 30(3):175-81. PubMed ID: 13679111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Haemophilus influenzae type B impairment of pial vessel autoregulation in rats.
    Berkowitz ID; Hayden WR; Traystman RJ; Jones MD
    Pediatr Res; 1993 Jan; 33(1):48-51. PubMed ID: 8433860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Hemodynamic Response of Pial Arterioles Contributes to a Quadriphasic Cerebral Autoregulation Physiology.
    Klein SP; De Sloovere V; Meyfroidt G; Depreitere B
    J Am Heart Assoc; 2022 Jan; 11(1):e022943. PubMed ID: 34935426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pial microvascular responses to transient bilateral common carotid artery occlusion: effects of hypertonic glycerol.
    Lapi D; Marchiafava PL; Colantuoni A
    J Vasc Res; 2008; 45(2):89-102. PubMed ID: 17934320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salvinorin A administration after global cerebral hypoxia/ischemia preserves cerebrovascular autoregulation via kappa opioid receptor in piglets.
    Wang Z; Ma N; Riley J; Armstead WM; Liu R
    PLoS One; 2012; 7(7):e41724. PubMed ID: 22911847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pial vessel caliber and cerebral blood flow during hemorrhage and hypercapnia in the rabbit.
    Tuor UI; Farrar JK
    Am J Physiol; 1984 Jul; 247(1 Pt 2):H40-51. PubMed ID: 6742212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebrovascular responses to therapeutic dose of indomethacin in newborn pigs.
    Pourcyrous M; Busija DW; Shibata M; Bada HS; Korones SB; Leffler CW
    Pediatr Res; 1999 Apr; 45(4 Pt 1):582-7. PubMed ID: 10203152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.