BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 11564556)

  • 1. A general approach for the generation of orthogonal tRNAs.
    Wang L; Schultz PG
    Chem Biol; 2001 Sep; 8(9):883-90. PubMed ID: 11564556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome.
    Neumann H; Wang K; Davis L; Garcia-Alai M; Chin JW
    Nature; 2010 Mar; 464(7287):441-4. PubMed ID: 20154731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening system for orthogonal suppressor tRNAs based on the species-specific toxicity of suppressor tRNAs.
    Tian H; Deng D; Huang J; Yao D; Xu X; Gao X
    Biochimie; 2013 Apr; 95(4):881-8. PubMed ID: 23274575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression.
    Anderson JC; Schultz PG
    Biochemistry; 2003 Aug; 42(32):9598-608. PubMed ID: 12911301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthogonal Protein Translation Using Pyrrolysyl-tRNA Synthetases for Single- and Multiple-Noncanonical Amino Acid Mutagenesis.
    Baumann T; Exner M; Budisa N
    Adv Biochem Eng Biotechnol; 2018; 162():1-19. PubMed ID: 27783132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Misacylation of yeast amber suppressor tRNA(Tyr) by E. coli lysyl-tRNA synthetase and its effective repression by genetic engineering of the tRNA sequence.
    Fukunaga J; Yokogawa T; Ohno S; Nishikawa K
    J Biochem; 2006 Apr; 139(4):689-96. PubMed ID: 16672269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transforming a pair of orthogonal tRNA-aminoacyl-tRNA synthetase from Archaea to function in mammalian cells.
    Thibodeaux GN; Liang X; Moncivais K; Umeda A; Singer O; Alfonta L; Zhang ZJ
    PLoS One; 2010 Jun; 5(6):e11263. PubMed ID: 20582317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Twenty-first aminoacyl-tRNA synthetase-suppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria.
    Kowal AK; Kohrer C; RajBhandary UL
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2268-73. PubMed ID: 11226228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells.
    Köhrer C; Sullivan EL; RajBhandary UL
    Nucleic Acids Res; 2004; 32(21):6200-11. PubMed ID: 15576346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of an 'orthogonal' suppressor tRNA derived from E. coli tRNA2(Gln).
    Liu DR; Magliery TJ; Schultz PG
    Chem Biol; 1997 Sep; 4(9):685-91. PubMed ID: 9331409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed Evolution of the
    Schwark DG; Schmitt MA; Fisk JD
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An enhanced system for unnatural amino acid mutagenesis in E. coli.
    Young TS; Ahmad I; Yin JA; Schultz PG
    J Mol Biol; 2010 Jan; 395(2):361-74. PubMed ID: 19852970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional replacement of the endogenous tyrosyl-tRNA synthetase-tRNATyr pair by the archaeal tyrosine pair in Escherichia coli for genetic code expansion.
    Iraha F; Oki K; Kobayashi T; Ohno S; Yokogawa T; Nishikawa K; Yokoyama S; Sakamoto K
    Nucleic Acids Res; 2010 Jun; 38(11):3682-91. PubMed ID: 20159998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolving Orthogonal Suppressor tRNAs To Incorporate Modified Amino Acids.
    Maranhao AC; Ellington AD
    ACS Synth Biol; 2017 Jan; 6(1):108-119. PubMed ID: 27600875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An archaebacteria-derived glutamyl-tRNA synthetase and tRNA pair for unnatural amino acid mutagenesis of proteins in Escherichia coli.
    Santoro SW; Anderson JC; Lakshman V; Schultz PG
    Nucleic Acids Res; 2003 Dec; 31(23):6700-9. PubMed ID: 14627803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance analysis of orthogonal pairs designed for an expanded eukaryotic genetic code.
    Nehring S; Budisa N; Wiltschi B
    PLoS One; 2012; 7(4):e31992. PubMed ID: 22493661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo generation of mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs.
    Neumann H; Slusarczyk AL; Chin JW
    J Am Chem Soc; 2010 Feb; 132(7):2142-4. PubMed ID: 20121121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids.
    Pott M; Schmidt MJ; Summerer D
    ACS Chem Biol; 2014 Dec; 9(12):2815-22. PubMed ID: 25299570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites.
    Ozawa K; Loscha KV; Kuppan KV; Loh CT; Dixon NE; Otting G
    Biochem Biophys Res Commun; 2012 Feb; 418(4):652-6. PubMed ID: 22293204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion.
    Kobayashi T; Nureki O; Ishitani R; Yaremchuk A; Tukalo M; Cusack S; Sakamoto K; Yokoyama S
    Nat Struct Biol; 2003 Jun; 10(6):425-32. PubMed ID: 12754495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.