BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 11564586)

  • 21. Cholesterol depletion of human immunodeficiency virus type 1 and simian immunodeficiency virus with beta-cyclodextrin inactivates and permeabilizes the virions: evidence for virion-associated lipid rafts.
    Graham DR; Chertova E; Hilburn JM; Arthur LO; Hildreth JE
    J Virol; 2003 Aug; 77(15):8237-48. PubMed ID: 12857892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cholesterol-rich lipid rafts play a critical role in bovine parainfluenza virus type 3 (BPIV3) infection.
    Li L; Yu L; Hou X
    Res Vet Sci; 2017 Oct; 114():341-347. PubMed ID: 28654867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway.
    Liu NQ; Lossinsky AS; Popik W; Li X; Gujuluva C; Kriederman B; Roberts J; Pushkarsky T; Bukrinsky M; Witte M; Weinand M; Fiala M
    J Virol; 2002 Jul; 76(13):6689-700. PubMed ID: 12050382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationship between cholesterol trafficking and signaling in rafts and caveolae.
    Fielding CJ; Fielding PE
    Biochim Biophys Acta; 2003 Mar; 1610(2):219-28. PubMed ID: 12648776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Properties of HIV-1 associated cholesterol in addition to raft formation are important for virus infection.
    Hawkes D; Jones KL; Smyth RP; Pereira CF; Bittman R; Jaworowski A; Mak J
    Virus Res; 2015 Dec; 210():18-21. PubMed ID: 26191619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human immunodeficiency virus type 1 virological synapse formation in T cells requires lipid raft integrity.
    Jolly C; Sattentau QJ
    J Virol; 2005 Sep; 79(18):12088-94. PubMed ID: 16140785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HIV-1 entry into T-cells is not dependent on CD4 and CCR5 localization to sphingolipid-enriched, detergent-resistant, raft membrane domains.
    Percherancier Y; Lagane B; Planchenault T; Staropoli I; Altmeyer R; Virelizier JL; Arenzana-Seisdedos F; Hoessli DC; Bachelerie F
    J Biol Chem; 2003 Jan; 278(5):3153-61. PubMed ID: 12431990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human immunodeficiency virus type 1 enters primary human brain microvascular endothelial cells by a mechanism involving cell surface proteoglycans independent of lipid rafts.
    Argyris EG; Acheampong E; Nunnari G; Mukhtar M; Williams KJ; Pomerantz RJ
    J Virol; 2003 Nov; 77(22):12140-51. PubMed ID: 14581551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic reorganization of chemokine receptors, cholesterol, lipid rafts, and adhesion molecules to sites of CD4 engagement.
    Nguyen DH; Giri B; Collins G; Taub DD
    Exp Cell Res; 2005 Apr; 304(2):559-69. PubMed ID: 15748900
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of cytokine signaling in human retinal endothelial cells through modification of caveolae/lipid rafts by docosahexaenoic acid.
    Chen W; Jump DB; Esselman WJ; Busik JV
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):18-26. PubMed ID: 17197511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Viral modulation of lipid rafts and their potential as putative antiviral targets.
    Gee YJ; Sea YL; Lal SK
    Rev Med Virol; 2023 Mar; 33(2):e2413. PubMed ID: 36504273
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic tradeoffs in the raft-mediated entry of human immunodeficiency virus type 1 into cells.
    Lim KI; Yin J
    Biotechnol Bioeng; 2006 Feb; 93(2):246-57. PubMed ID: 16136590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there?
    Chini B; Parenti M
    J Mol Endocrinol; 2004 Apr; 32(2):325-38. PubMed ID: 15072542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Depletion of cellular cholesterol inhibits membrane binding and higher-order multimerization of human immunodeficiency virus type 1 Gag.
    Ono A; Waheed AA; Freed EO
    Virology; 2007 Mar; 360(1):27-35. PubMed ID: 17095032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion.
    Takeda M; Leser GP; Russell CJ; Lamb RA
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14610-7. PubMed ID: 14561897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lipid rafts in health and disease.
    Michel V; Bakovic M
    Biol Cell; 2007 Mar; 99(3):129-40. PubMed ID: 17064251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amphotropic murine leukemia virus is preferentially attached to cholesterol-rich microdomains after binding to mouse fibroblasts.
    Beer C; Pedersen L
    Virol J; 2006 Apr; 3():21. PubMed ID: 16579862
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Specific association of glycoprotein B with lipid rafts during herpes simplex virus entry.
    Bender FC; Whitbeck JC; Ponce de Leon M; Lou H; Eisenberg RJ; Cohen GH
    J Virol; 2003 Sep; 77(17):9542-52. PubMed ID: 12915568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipid rafts and pathogens: the art of deception and exploitation.
    Bukrinsky MI; Mukhamedova N; Sviridov D
    J Lipid Res; 2020 May; 61(5):601-610. PubMed ID: 31615838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.