BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 11565190)

  • 1. Effect of nitric oxide on mouse clonal osteogenic cell, MC3T3-E1, proliferation in vitro.
    Kanamaru Y; Takada T; Saura R; Mizuno K
    Kobe J Med Sci; 2001 Feb; 47(1):1-11. PubMed ID: 11565190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide promotes infectious bone resorption by enhancing cytokine-stimulated interstitial collagenase synthesis in osteoblasts.
    Lin SK; Kok SH; Kuo MY; Lee MS; Wang CC; Lan WH; Hsiao M; Goldring SR; Hong CY
    J Bone Miner Res; 2003 Jan; 18(1):39-46. PubMed ID: 12510804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. eNOS, nNOS, cGMP and protein kinase G mediate the inhibitory effect of pancreastatin, a chromogranin A-derived peptide, on growth and proliferation of hepatoma cells.
    Díaz-Troya S; Najib S; Sánchez-Margalet V
    Regul Pept; 2005 Feb; 125(1-3):41-6. PubMed ID: 15582712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide promotes the progression of periapical lesion via inducing macrophage and osteoblast apoptosis.
    Lin SK; Kok SH; Lin LD; Wang CC; Kuo MY; Lin CT; Hsiao M; Hong CY
    Oral Microbiol Immunol; 2007 Feb; 22(1):24-9. PubMed ID: 17241167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biphasic effects of nitric oxide in primary rat osteoblasts are cGMP dependent.
    Mancini L; Moradi-Bidhendi N; Becherini L; Martineti V; MacIntyre I
    Biochem Biophys Res Commun; 2000 Aug; 274(2):477-81. PubMed ID: 10913363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of cyclic guanylate monophosphate in nitric oxide-induced injury to rat small intestinal epithelial cells.
    Tepperman BL; Abrahamson TD; Soper BD
    J Pharmacol Exp Ther; 1998 Mar; 284(3):929-33. PubMed ID: 9495851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and functional role of nitric oxide synthase in osteoblast-like cells.
    Riancho JA; Salas E; Zarrabeitia MT; Olmos JM; Amado JA; Fernández-Luna JL; González-Macías J
    J Bone Miner Res; 1995 Mar; 10(3):439-46. PubMed ID: 7540349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic-AMP-dependent proliferation of a human osteoblast cell line (HOS cells) induced by hydroxyapatite: effect of exogenous nitric oxide.
    Sosroseno W; Sugiatno E
    Acta Biomed; 2008 Aug; 79(2):110-6. PubMed ID: 18788505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide mediates 17beta-estradiol-stimulated human and rodent osteoblast proliferation and differentiation.
    O'Shaughnessy MC; Polak JM; Afzal F; Hukkanen MV; Huang P; MacIntyre I; Buttery LD
    Biochem Biophys Res Commun; 2000 Nov; 277(3):604-10. PubMed ID: 11062001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of nitric oxide on the production of cyclic AMP by a human osteoblast (HOS) cell line stimulated with hydroxyapatite.
    Sosroseno W; Sugiatno E; Samsudin AR; Ibrahim MF
    Biomed Pharmacother; 2008 Jun; 62(5):328-32. PubMed ID: 17988826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of nitric oxide on proliferation and differentiation of rat brown adipocytes in primary cultures.
    Nisoli E; Clementi E; Tonello C; Sciorati C; Briscini L; Carruba MO
    Br J Pharmacol; 1998 Oct; 125(4):888-94. PubMed ID: 9831929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human skeletal growth factor stimulates collagen synthesis and inhibits proliferation in a clonal osteoblast cell line (MC3T3-E1).
    Linkhart S; Mohan S; Linkhart TA; Kumegawa M; Baylink DJ
    J Cell Physiol; 1986 Aug; 128(2):307-12. PubMed ID: 3733891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide-mediated regulation of connexin43 expression and gap junctional intercellular communication in mesangial cells.
    Yao J; Hiramatsu N; Zhu Y; Morioka T; Takeda M; Oite T; Kitamura M
    J Am Soc Nephrol; 2005 Jan; 16(1):58-67. PubMed ID: 15537869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic nitric oxide synthase blockade desensitizes the heart to the negative metabolic effects of nitric oxide.
    Davidov T; Weiss HR; Tse J; Scholz PM
    Life Sci; 2006 Sep; 79(17):1674-80. PubMed ID: 16831448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of SNAP potentiating antiproliferative effect of calcitonin gene-related peptide in cultured vascular smooth muscle cells.
    Wang X; Wang W; Li Y; Bai Y; Fiscus RR
    J Mol Cell Cardiol; 1999 Sep; 31(9):1599-606. PubMed ID: 10471344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of nitric oxide on ATP-induced Ca2+ signaling in outer hair cells of the guinea pig cochlea.
    Shen J; Harada N; Nakazawa H; Kaneko T; Izumikawa M; Yamashita T
    Brain Res; 2006 Apr; 1081(1):101-12. PubMed ID: 16500627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac mitochondrial cGMP stimulates cytochrome c release.
    Seya K; Motomura S; Furukawa K
    Clin Sci (Lond); 2007 Jan; 112(2):113-21. PubMed ID: 16961461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nitric oxide donor, S-nitroso-N-acetyl-penicillamine, inhibits secretory activity in rat isolated parietal cells.
    Brown JF; Hanson PJ; Whittle BJ
    Biochem Biophys Res Commun; 1993 Sep; 195(3):1354-9. PubMed ID: 8216268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incubation of porcine iris-ciliary bodies to study the mechanisms by which nitric oxide donors lower intraocular pressure.
    Kotikoski H; Kankuri E; Vapaatalo H
    Med Sci Monit; 2003 Jan; 9(1):BR1-7. PubMed ID: 12552230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibited anabolic effect of insulin-like growth factor-I on stromal bone marrow cells in endothelial nitric oxide synthase-knockout mice.
    Lagumdzija A; Ou G; Petersson M; Bucht E; Gonon A; Pernow Y
    Acta Physiol Scand; 2004 Sep; 182(1):29-35. PubMed ID: 15329054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.