These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 1156576)

  • 21. Metal ion activator effects on intrinsic isotope effects for hydride transfer from decarboxylation in the reaction catalyzed by the NAD-malic enzyme from Ascaris suum.
    Karsten WE; Gavva SR; Park SH; Cook PF
    Biochemistry; 1995 Mar; 34(10):3253-60. PubMed ID: 7880820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intermediate partitioning in the tartrate dehydrogenase-catalyzed oxidative decarboxylation of D-malate.
    Tipton PA
    Biochemistry; 1993 Mar; 32(11):2822-7. PubMed ID: 8457548
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Absence of observable biotin-protein interactions in the 1.3S subunit of transcarboxylase: an NMR study.
    Reddy DV; Shenoy BC; Carey PR; Sönnichsen FD
    Biochemistry; 1997 Dec; 36(48):14676-82. PubMed ID: 9398186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amino acid sequence of the biotinyl subunit from transcarboxylase.
    Maloy WL; Bowien BU; Zwolinski GK; Kumar KG; Wood HG; Ericsson LH; Walsh KA
    J Biol Chem; 1979 Nov; 254(22):11615-22. PubMed ID: 40985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stereochemical course of biotin-independent malonate decarboxylase catalysis.
    Handa S; Koo JH; Kim YS; Floss HG
    Arch Biochem Biophys; 1999 Oct; 370(1):93-6. PubMed ID: 10496981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new large form of transcarboxylase with six outer subunits and twelve biotinyl carboxyl carrier subunits.
    Wood HG; Chiao JP; Poto EM
    J Biol Chem; 1977 Feb; 252(4):1490-9. PubMed ID: 14153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alpha-secondary tritium kinetic isotope effects indicate hydrogen tunneling and coupled motion occur in the oxidation of L-malate by NAD-malic enzyme.
    Karsten WE; Hwang CC; Cook PF
    Biochemistry; 1999 Apr; 38(14):4398-402. PubMed ID: 10194359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High resolution solution structure of the 1.3S subunit of transcarboxylase from Propionibacterium shermanii.
    Reddy DV; Shenoy BC; Carey PR; Sönnichsen FD
    Biochemistry; 2000 Mar; 39(10):2509-16. PubMed ID: 10704200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcarboxylase. VI. Kinetic analysis of the reaction mechanism.
    Northrop DB
    J Biol Chem; 1969 Nov; 244(21):5808-19. PubMed ID: 5350937
    [No Abstract]   [Full Text] [Related]  

  • 30. New and easy strategy for cloning, expression, purification, and characterization of the 5S subunit of transcarboxylase from Propionibacterium f. shermanii.
    Kumar Bhat R; Berger S
    Prep Biochem Biotechnol; 2007; 37(1):13-26. PubMed ID: 17134979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proton transfer in methylmalonyl-CoA epimerase from Propionibacterium shermanii. The reaction of (2R)-methylmalonyl-CoA in tritiated water.
    Fuller JQ; Leadlay PF
    Biochem J; 1983 Sep; 213(3):643-50. PubMed ID: 6311170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stereochemical studies on the hydration of monofluorofumarate and 2,3-difluorofumarate by fumarase.
    Marletta MA; Cheung YF; Walsh C
    Biochemistry; 1982 May; 21(11):2637-44. PubMed ID: 7093213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the carboxylate delivery module of transcarboxylase: following spontaneous decarboxylation of the 1.3S-CO2- subunit by NMR and FTIR spectroscopies.
    Rivera-Hainaj RE; Pusztai-Carey M; Venkat Reddy D; Choowongkomon K; Sönnichsen FD; Carey PR
    Biochemistry; 2002 Feb; 41(7):2191-7. PubMed ID: 11841210
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stereochemistry of the methylcitric acids formed in the citrate synthase reaction with propionyl-CoA.
    Brandänge S; Josephson S; Måhlén A; Mörch L; Sweetman L; Vallén S
    Acta Chem Scand B; 1977; 31(7):628-30. PubMed ID: 919985
    [No Abstract]   [Full Text] [Related]  

  • 35. The conserved methionines of the 1.3 S biotinyl subunit of transcarboxylase: effect of mutations on conformation and activity.
    Shenoy BC; Samols D; Kumar GK
    Arch Biochem Biophys; 1993 Aug; 304(2):359-66. PubMed ID: 8346913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on the intramolecular and intermolecular kinetic isotope effects in pyruvate carboxylase catalysis.
    Cheung YF; Walsh C
    Biochemistry; 1976 Aug; 15(17):3749-54. PubMed ID: 952886
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stabilization of radical intermediates by an active-site tyrosine residue in methylmalonyl-CoA mutase.
    Thomä NH; Meier TW; Evans PR; Leadlay PF
    Biochemistry; 1998 Oct; 37(41):14386-93. PubMed ID: 9772164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Malate synthase: proof of a stepwise Claisen condensation using the double-isotope fractionation test.
    Clark JD; O'Keefe SJ; Knowles JR
    Biochemistry; 1988 Aug; 27(16):5961-71. PubMed ID: 2847778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyruvate carboxylation in the rat heart. Role of biotin-dependent enzymes.
    Sundqvist KE; Hiltunen JK; Hassinen IE
    Biochem J; 1989 Feb; 257(3):913-6. PubMed ID: 2930495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stereochemistry of pyruvate kinase, pyruvate carboxylase, and malate enzyme reactions.
    Rose IA
    J Biol Chem; 1970 Nov; 245(22):6052-6. PubMed ID: 5484463
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.