These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 1156576)

  • 41. Transcarboxylase. 8. Isolation and properties of a biotin-carboxyl carrier protein.
    Gerwin BI; Jacobson BE; Wood HG
    Proc Natl Acad Sci U S A; 1969 Dec; 64(4):1315-22. PubMed ID: 5271754
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The sterochemistry at carbon 3 of pyruvate lyase condensation products. 2-Keto-3-deoxygluconate 6-phosphate and 2-keto-3-deoxygalactonate-6-phosphate aldolase of Pseudomonas saccharophila.
    Meloche HP; Monti CT
    J Biol Chem; 1975 Sep; 250(17):6875-9. PubMed ID: 1158886
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stereochemistry of reactions catalyzed by glutamate decarboxylase.
    Yamada H; O'Leary MH
    Biochemistry; 1978 Feb; 17(4):669-72. PubMed ID: 341973
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transcarboxylase. XII. Identification of the metal-containing subunits of transcarboxylase and stability of the binding.
    Ahmad F; Lygre DG; Jacobson BE; Wood HG
    J Biol Chem; 1972 Oct; 247(19):6299-305. PubMed ID: 4631318
    [No Abstract]   [Full Text] [Related]  

  • 45. Biotin carboxylations--concerted or not concerted? That is the question!
    Stubbe J; Abeles RH
    J Biol Chem; 1977 Dec; 252(23):8338-40. PubMed ID: 924996
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acetyl CoA carboxylase: the purified transcarboxylase component.
    Alberts AW; Gordon SG; Vagelos PR
    Proc Natl Acad Sci U S A; 1971 Jun; 68(6):1259-63. PubMed ID: 4942182
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Magnitude of the equilibrium isotope effect on carbon-tritium bond synthesis.
    Meloche HP; Monti CT; Cleland WW
    Biochim Biophys Acta; 1977 Feb; 480(2):517-9. PubMed ID: 836851
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Immunochemistry of the subunits of transcarboxylase.
    Berger M; Wood HG
    J Biol Chem; 1976 Nov; 251(22):7021-34. PubMed ID: 825513
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stereochemistry of phosphoenolpyruvate carboxylation catalyzed by phosphoenolpyruvate carboxykinase.
    Hwang SH; Nowak T
    Biochemistry; 1986 Sep; 25(19):5590-5. PubMed ID: 3778875
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Use of isotope effects to deduce the chemical mechanism of fumarase.
    Blanchard JS; Cleland WW
    Biochemistry; 1980 Sep; 19(19):4506-13. PubMed ID: 7407088
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural characterization of the entire 1.3S subunit of transcarboxylase from Propionibacterium shermanii.
    Reddy DV; Rothemund S; Shenoy BC; Carey PR; Sönnichsen FD
    Protein Sci; 1998 Oct; 7(10):2156-63. PubMed ID: 9792103
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oxalacetate decarboxylase and pyruvate carboxylase activities, and effect of sulfhydryl reagents in malic enzyme from Sulfolobus solfataricus.
    Guagliardi A; Moracci M; Manco G; Rossi M; Bartolucci S
    Biochim Biophys Acta; 1988 Nov; 957(2):301-11. PubMed ID: 3142524
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of carbon and electron flow in Propionispira arboris: relationship of catabolic enzyme levels to carbon substrates fermented during propionate formation via the methylmalonyl coenzyme A pathway.
    Thompson TE; Zeikus JG
    J Bacteriol; 1988 Sep; 170(9):3996-4000. PubMed ID: 3410821
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanism of pigeon liver malic enzyme: kinetics, specificity, and half-site stoichiometry of the alkylation of a cysteinyl residue by the substrate-inhibitor bromopyruvate.
    Chang GG; Hsu RY
    Biochemistry; 1977 Jan; 16(2):311-20. PubMed ID: 13810
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electron and nuclear magnetic resonance studies of the interaction of pyruvate with transcarboxylase.
    Fung CH; Mildvan AS; Leigh JS
    Biochemistry; 1974 Mar; 13(6):1160-9. PubMed ID: 4360781
    [No Abstract]   [Full Text] [Related]  

  • 56. Energy conservation by succinate decarboxylation in Veillonella parvula.
    Denger K; Schink B
    J Gen Microbiol; 1992 May; 138(5):967-71. PubMed ID: 1645132
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cloning and expression of the 1.3S biotin-containing subunit of transcarboxylase.
    Murtif VL; Bahler CR; Samols D
    Proc Natl Acad Sci U S A; 1985 Sep; 82(17):5617-21. PubMed ID: 3898065
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 1H and 31P Fourier transform magnetic resonance studies of the conformation of enzyme-bound propionyl coenzyme A on the transcarboxylase.
    Fung CH; Feldmann RJ; Mildvan AS
    Biochemistry; 1976 Jan; 15(1):75-84. PubMed ID: 1247514
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Determination of the chemical mechanism of malic enzyme by isotope effects.
    Edens WA; Urbauer JL; Cleland WW
    Biochemistry; 1997 Feb; 36(5):1141-7. PubMed ID: 9033405
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Equilibrium substrate binding studies of the malic enzyme of pigeon liver. Equivalence of nucleotide sites and anticooperativity associated with the binding of L-malate to the enzyme-manganese(II)-reduced nicotinamide adenine dinucleotide phosphate ternary complex.
    Pry TA; Hsu RY
    Biochemistry; 1980 Mar; 19(5):951-62. PubMed ID: 7356971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.