These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11565873)

  • 1. Possible control of intermittent cerebral ischemia by monitoring of direct-current potentials.
    Sakaki T; Graf R; Nozaki H; Rosner G; Heiss WD
    J Neurosurg; 2001 Sep; 95(3):495-9. PubMed ID: 11565873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium ion transients in peri-infarct depolarizations may deteriorate ion homeostasis and expand infarction in focal cerebral ischemia in cats.
    Ohta K; Graf R; Rosner G; Heiss WD
    Stroke; 2001 Feb; 32(2):535-43. PubMed ID: 11157194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profiles of cortical tissue depolarization in cat focal cerebral ischemia in relation to calcium ion homeostasis and nitric oxide production.
    Ohta K; Graf R; Rosner G; Heiss WD
    J Cereb Blood Flow Metab; 1997 Nov; 17(11):1170-81. PubMed ID: 9390649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrupted arterial occlusion reduces ischemic damage in a focal cerebral ischemia model of rats.
    Kurokawa Y; Tranmer BI
    Neurosurgery; 1995 Oct; 37(4):750-6; discussion 756-7. PubMed ID: 8559305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute improvement in histological outcome by MK-801 following focal cerebral ischemia and reperfusion in the cat independent of blood flow changes.
    Dezsi L; Greenberg JH; Hamar J; Sladky J; Karp A; Reivich M
    J Cereb Blood Flow Metab; 1992 May; 12(3):390-9. PubMed ID: 1314841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous monitoring of regional cerebral blood flow during temporary arterial occlusion in aneurysm surgery.
    Thomé C; Vajkoczy P; Horn P; Bauhuf C; Hübner U; Schmiedek P
    J Neurosurg; 2001 Sep; 95(3):402-11. PubMed ID: 11565860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral damage caused by interrupted, repeated arterial occlusion versus uninterrupted occlusion in a focal ischemic model.
    Steinberg GK; Panahian N; Sun GH; Maier CM; Kunis D
    J Neurosurg; 1994 Oct; 81(4):554-9. PubMed ID: 7931589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeated negative DC deflections in rat cortex following middle cerebral artery occlusion are abolished by MK-801: effect on volume of ischemic injury.
    Iijima T; Mies G; Hossmann KA
    J Cereb Blood Flow Metab; 1992 Sep; 12(5):727-33. PubMed ID: 1506440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Value of evoked potential monitoring in vascular surgery].
    Dinkel M
    Anasthesiol Intensivmed Notfallmed Schmerzther; 1997 Sep; 32(2 Suppl):S215-9. PubMed ID: 9417231
    [No Abstract]   [Full Text] [Related]  

  • 10. Reduction of infarct volume by halothane: effect on cerebral blood flow or perifocal spreading depression-like depolarizations.
    Saito R; Graf R; Hübel K; Fujita T; Rosner G; Heiss WD
    J Cereb Blood Flow Metab; 1997 Aug; 17(8):857-64. PubMed ID: 9290583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Neurophysiologic monitoring in neurosurgical vascular operations: specific technical requirements and their conversion].
    Hinrichs H; Heinze HJ; Gaab MR
    EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1992 Dec; 23(4):195-202. PubMed ID: 1486824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral protection by intermittent reperfusion during temporary focal ischemia in the rat.
    David CA; Prado R; Dietrich WD
    J Neurosurg; 1996 Nov; 85(5):923-8. PubMed ID: 8893733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Reversibility of cerebral cortical function after recirculation in experimental cerebral ischemia].
    Yamagata S; Kikuchi H; Hashimoto K
    No Shinkei Geka; 1988 Sep; 16(10):1133-9. PubMed ID: 3205356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex.
    Strong AJ; Anderson PJ; Watts HR; Virley DJ; Lloyd A; Irving EA; Nagafuji T; Ninomiya M; Nakamura H; Dunn AK; Graf R
    Brain; 2007 Apr; 130(Pt 4):995-1008. PubMed ID: 17438018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of spreading depression in the ischemic hemisphere following experimental middle cerebral artery occlusion: effect on infarct morphology.
    Back T; Ginsberg MD; Dietrich WD; Watson BD
    J Cereb Blood Flow Metab; 1996 Mar; 16(2):202-13. PubMed ID: 8594051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring during supratentorial surgery.
    Emerson RG; Turner CA
    J Clin Neurophysiol; 1993 Oct; 10(4):404-11. PubMed ID: 8308139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral administration of carbenoxolone reduces ischemic reperfusion injury in transient model of cerebral ischemia.
    Vakili A; Hosseinzadeh SA; Khorasani MZ
    J Stroke Cerebrovasc Dis; 2009; 18(2):81-5. PubMed ID: 19251182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time detection of vascular occlusion and reperfusion of the brain during surgery by using infrared imaging.
    Watson JC; Gorbach AM; Pluta RM; Rak R; Heiss JD; Oldfield EH
    J Neurosurg; 2002 May; 96(5):918-23. PubMed ID: 12005400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional recovery of cortical neurons as related to degree and duration of ischemia.
    Heiss WD; Rosner G
    Ann Neurol; 1983 Sep; 14(3):294-301. PubMed ID: 6314871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breakdown of calcium homeostasis in relation to tissue depolarization: comparison between gray and white matter ischemia.
    Kumura E; Graf R; Dohmen C; Rosner G; Heiss WD
    J Cereb Blood Flow Metab; 1999 Jul; 19(7):788-93. PubMed ID: 10413034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.