These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11566372)

  • 21. Alkaline phosphatase from the hyperthermophilic bacterium T. maritima requires cobalt for activity.
    Wojciechowski CL; Cardia JP; Kantrowitz ER
    Protein Sci; 2002 Apr; 11(4):903-11. PubMed ID: 11910033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequence analysis of the agaB gene encoding a new beta-agarase from Vibrio sp. strain JT0107.
    Sugano Y; Matsumoto T; Noma M
    Biochim Biophys Acta; 1994 May; 1218(1):105-8. PubMed ID: 8193156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of the gene for the monomeric alkaline phosphatase of Vibrio cholerae serogroup O1 strain.
    Majumdar A; Ghatak A; Ghosh RK
    Gene; 2005 Jan; 344():251-8. PubMed ID: 15656991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A thermolabile triosephosphate isomerase from the psychrophile Vibrio sp. strain ANT-300.
    Adler E; Knowles J
    Arch Biochem Biophys; 1995 Aug; 321(1):137-9. PubMed ID: 7639513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving Escherichia coli alkaline phosphatase efficacy by additional mutations inside and outside the catalytic pocket.
    Muller BH; Lamoure C; Le Du MH; Cattolico L; Lajeunesse E; Lemaître F; Pearson A; Ducancel F; Ménez A; Boulain JC
    Chembiochem; 2001 Aug; 2(7-8):517-23. PubMed ID: 11828484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cloning of an alkaline phosphatase gene from the moderately thermophilic bacterium Meiothermus ruber and characterization of the recombinant enzyme.
    Yurchenko JV; Budilov AV; Deyev SM; Khromov IS; Sobolev AY
    Mol Genet Genomics; 2003 Oct; 270(1):87-93. PubMed ID: 12928867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular cloning and characterization of a novel beta-1,3-xylanase possessing two putative carbohydrate-binding modules from a marine bacterium Vibrio sp. strain AX-4.
    Kiyohara M; Sakaguchi K; Yamaguchi K; Araki T; Nakamura T; Ito M
    Biochem J; 2005 Jun; 388(Pt 3):949-57. PubMed ID: 15743273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations.
    Hjörleifsson JG; Ásgeirsson B
    Biochim Biophys Acta; 2016 Jul; 1864(7):755-65. PubMed ID: 27043172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of a subtilisin-like serine proteinase from a psychrotrophic Vibrio species reveals structural aspects of cold adaptation.
    Arnórsdóttir J; Kristjánsson MM; Ficner R
    FEBS J; 2005 Feb; 272(3):832-45. PubMed ID: 15670163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ligand-binding and metal-exchange crystallographic studies on shrimp alkaline phosphatase.
    de Backer MM; McSweeney S; Lindley PF; Hough E
    Acta Crystallogr D Biol Crystallogr; 2004 Sep; 60(Pt 9):1555-61. PubMed ID: 15333925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis.
    Kim EE; Wyckoff HW
    J Mol Biol; 1991 Mar; 218(2):449-64. PubMed ID: 2010919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic complexity, structure, and characterization of highly active bovine intestinal alkaline phosphatases.
    Manes T; Hoylaerts MF; Müller R; Lottspeich F; Hölke W; Millán JL
    J Biol Chem; 1998 Sep; 273(36):23353-60. PubMed ID: 9722569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural features and dynamics of a cold-adapted alkaline phosphatase studied by EPR spectroscopy.
    Heidarsson PO; Sigurdsson ST; Asgeirsson B
    FEBS J; 2009 May; 276(10):2725-35. PubMed ID: 19368558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amino acid substitutions at the subunit interface of dimeric Escherichia coli alkaline phosphatase cause reduced structural stability.
    Martin DC; Pastra-Landis SC; Kantrowitz ER
    Protein Sci; 1999 May; 8(5):1152-9. PubMed ID: 10338026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A moderately thermostable alkaline phosphatase from Geobacillus thermodenitrificans T2: cloning, expression and biochemical characterization.
    Zhang Y; Ji C; Zhang X; Yang Z; Peng J; Qiu R; Xie Y; Mao Y
    Appl Biochem Biotechnol; 2008 Oct; 151(1):81-92. PubMed ID: 18365148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of a highly thermostable alkaline phosphatase from the euryarchaeon Pyrococcus abyssi.
    Zappa S; Rolland JL; Flament D; Gueguen Y; Boudrant J; Dietrich J
    Appl Environ Microbiol; 2001 Oct; 67(10):4504-11. PubMed ID: 11571149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cloning and sequencing of an Na+/H+ antiporter gene from the marine bacterium Vibrio alginolyticus.
    Nakamura T; Komano Y; Itaya E; Tsukamoto K; Tsuchiya T; Unemoto T
    Biochim Biophys Acta; 1994 Mar; 1190(2):465-8. PubMed ID: 8142450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conversion of a magnesium binding site into a zinc binding site by a single amino acid substitution in Escherichia coli alkaline phosphatase.
    Murphy JE; Xu X; Kantrowitz ER
    J Biol Chem; 1993 Oct; 268(29):21497-500. PubMed ID: 8407998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of rat intestinal alkaline phosphatase--role of crown domain in mammalian alkaline phosphatases.
    Ghosh K; Mazumder Tagore D; Anumula R; Lakshmaiah B; Kumar PP; Singaram S; Matan T; Kallipatti S; Selvam S; Krishnamurthy P; Ramarao M
    J Struct Biol; 2013 Nov; 184(2):182-92. PubMed ID: 24076154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.