These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 1156642)

  • 1. Differences in the red fluorescence of acridine orange bound to single-stranded RNA and DNA.
    Ichimura S
    Biopolymers; 1975 May; 14(5):1033-47. PubMed ID: 1156642
    [No Abstract]   [Full Text] [Related]  

  • 2. Study of the interaction of DNA and acridine orange by various optical methods.
    Fredericq E; Houssier C
    Biopolymers; 1972; 11(11):2281-308. PubMed ID: 4634867
    [No Abstract]   [Full Text] [Related]  

  • 3. Induced circular dichroism of acridine orange bound to double-stranded RNA and transfer RNA.
    Zama M; Ichimura S
    Biopolymers; 1976 Sep; 15(9):1693-9. PubMed ID: 963258
    [No Abstract]   [Full Text] [Related]  

  • 4. [Study of interactions of DNA and acridine orange by fluorescence].
    Fredericq E
    Arch Int Physiol Biochim; 1971 Oct; 79(4):832-3. PubMed ID: 4110233
    [No Abstract]   [Full Text] [Related]  

  • 5. Fluorospectrophotometric characterization of nucleic acid-acridine orange complexes. II. Interaction of nucleic acids or nucleoproteins and acridine orange.
    Yamagata S; Minamishima Y; Morisawa S
    Osaka City Med J; 1972; 18(1):85-94. PubMed ID: 4125121
    [No Abstract]   [Full Text] [Related]  

  • 6. Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange.
    McMaster GK; Carmichael GG
    Proc Natl Acad Sci U S A; 1977 Nov; 74(11):4835-8. PubMed ID: 73185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric birefringence and dichroism of acridine orange and methylene blue complexes with polynucleotides.
    Bradley DF; Stellwagen NC; O'Konski CT; Paulson CM
    Biopolymers; 1972 Mar; 11(3):645-52. PubMed ID: 5016121
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of N-2-acetylaminofluorene modification on the conformation of nucleic acids.
    Levine AF; Fink LM; Weinstein IB; Grunberger D
    Cancer Res; 1974 Feb; 34(2):319-27. PubMed ID: 4589954
    [No Abstract]   [Full Text] [Related]  

  • 9. RNA-ligand interactions: affinity and specificity of aminoglycoside dimers and acridine conjugates to the HIV-1 Rev response element.
    Luedtke NW; Liu Q; Tor Y
    Biochemistry; 2003 Oct; 42(39):11391-403. PubMed ID: 14516190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular aspects on the specific interaction of cytotoxic plant alkaloid palmatine to poly(A).
    Giri P; Hossain M; Kumar GS
    Int J Biol Macromol; 2006 Nov; 39(4-5):210-21. PubMed ID: 16678250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The determination of native DNA in the mixture with denatured one by the fluorescence of acridine orange in the complex with DNA. I. Studies of green fluorescence intensity].
    Faddeeva MD
    Tsitologiia; 1969 Jan; 11(1):56-63. PubMed ID: 5806293
    [No Abstract]   [Full Text] [Related]  

  • 12. Fluorescence characterization of the transcription bubble in elongation complexes of T7 RNA polymerase.
    Liu C; Martin CT
    J Mol Biol; 2001 May; 308(3):465-75. PubMed ID: 11327781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory of the melting of DNA complexes with low-molecular substances.
    Frank-Kamenetskii MD; Karapetyan AT
    Mol Biol; 1972; 6(4):500-4. PubMed ID: 4121627
    [No Abstract]   [Full Text] [Related]  

  • 14. On the complex formation of acridine dyes with DNA. VII. Dependence of the binding on the dye structure.
    Löber G; Achtert G
    Biopolymers; 1969; 8(5):595-608. PubMed ID: 5362527
    [No Abstract]   [Full Text] [Related]  

  • 15. [Correlation between DNA melting temperature and the temperature variation of nuclear luminescence spectrum in plant cells supravitally stained with acridine orange].
    Ezerzha AA; Kulikov BN; Ovchinnikova MI; Mochalkin AI
    Tsitologiia; 1971 Aug; 13(8):1009-13. PubMed ID: 4107346
    [No Abstract]   [Full Text] [Related]  

  • 16. Discrimination of Adsorbed Double-Stranded and Single-Stranded DNA Molecules on Surfaces by Fluorescence Emission Spectroscopy Using Acridine Orange Dye.
    Hoory E; Budassi J; Pfeffer E; Cho N; Thalappillil J; Andersen J; Rafailovich M; Sokolov J
    J Fluoresc; 2017 Nov; 27(6):2153-2158. PubMed ID: 28780638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence of complexes of acridine dye with synthetic polydeoxyribonucleotides: a physical model of frameshift mutation.
    Schreiber JP; Duane MP
    J Mol Biol; 1974 Mar; 83(4):487-501. PubMed ID: 4830857
    [No Abstract]   [Full Text] [Related]  

  • 18. Conformation and DNA binding properties of a single-stranded DNA binding region of sigma 70 subunit from Escherichia coli RNA polymerase are modulated by an interaction with the core enzyme.
    Callaci S; Heyduk T
    Biochemistry; 1998 Mar; 37(10):3312-20. PubMed ID: 9521651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the various types of circular dichroism induced on acridine orange bound to poly(S-carboxymethyl-L-cysteine).
    Imae T; Ikeda S
    Biopolymers; 1975 Jun; 14(6):1213-21. PubMed ID: 240463
    [No Abstract]   [Full Text] [Related]  

  • 20. Recognition of hairpin-containing single-stranded DNA by oligonucleotides containing internal acridine derivatives.
    François JC; Hélène C
    Bioconjug Chem; 1999; 10(3):439-46. PubMed ID: 10346876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.